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Abstract

The union bound is a classical tool in the probabilistic method for proving the existence
of objects with extremal features by showing that a random object satisfies each feature
with high probability. This approach has powered major results spanning theoretical
computer science, combinatorics, random matrix theory, and statistical physics — such as
the existence of graph sparsifiers, satisfying assignments to constraint satisfaction problems,
and low-energy configurations in spin glass models. However, the union bound ignores
correlations between different features, and thereby often leads to suboptimal results in
these applications.

This thesis presents an alternative approach: proving existence through the design and
analysis of algorithms that explicitly construct the desired objects. Each of the above prob-
lems can be reduced to minimizing either low-degree polynomials or linear-image norms
in high dimensions. For these objectives, we analyze algorithms inspired by continuous
optimization.

In the first part, we propose an orthogonal representation for first-order algorithms
optimizing random quadratic polynomials using Fourier analysis. We show that in the high-
dimensional limit, these algorithms can be analyzed by tracking their dynamics in a tree
basis. This reframes random polynomial optimization as a combinatorial problem, which
we explicitly solve in some cases. Our approach also yields the first direct justification, in
this setting, of the heuristic cavity method from physics.

The second part extends the approach to general polynomial optimization. We introduce
a multiscale union bound argument for random tensors, extending results of Friedman and
Wigderson on the spectral gap of random hypergraphs. We further present a new rounding
scheme for semidefinite programming relaxations, leading to improved approximation
guarantees for homogeneous cubic optimization and the Max-3-SAT problem.

In the third part, we design an algorithm for minimizing norms of linear functions via
Newton’s method applied to a regularized objective function. By varying the regularizer, we
recover and generalize foundational results in discrepancy theory. This framework yields
an improved bound in Spencer’s classical result from the 1980s, and establishes that the
Beck-Fiala and Komlos conjectures hold for a new class of pseudorandom instances.

Together, these results show that algorithms can not only match, but also exceed the
power of probabilistic arguments for finding extremal objects.
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CHAPTER 1.

Introduction

This thesis takes an algorithmic perspective on problems at the intersection of combina-
torics, random matrix theory, statistical physics, and optimization. Such questions often
reduce to finding rare objects satisfying a collection of desirable properties P, or proving
that none exist.

The classical approach to these problems is the probabilistic method: consider a random
object and apply a union bound to argue that, with positive probability, it satisfies all desired
properties simultaneously:

ZPr(x¢P)<1=> ﬂP;&@. (1.1)
Pe? * Pe?
While simple and effective, the argument (1.1) fails to account for correlations between
properties. As a result, it leads to suboptimal bounds for many fundamental problems.
To address these limitations, this thesis explores an alternative route: designing efficient
algorithms that directly target the desired objects. We show that analyzing such algorithms
yields not just constructive bounds, but often the simplest, most conceptual, and even
strongest proofs of results that were traditionally tackled with probabilistic arguments.

1.1. Motivating examples

We introduce four illustrative problems that will serve as recurring themes throughout this
thesis. They are both foundational in their respective field and share a common feature:
being amenable to a simple, though suboptimal, probabilistic argument. In contrast, the
algorithmic and optimization perspective will lead to results that are not only stronger, but
also more illuminating.

1.1.1. Satisfying Boolean formulas

The 3-SAT problem is a prototypical hard problem in theoretical computer science. It
appears on Karp’s original list of NP-complete problems [Kar72] and is very often used as
a starting point for reductions to prove that other problems are NP-hard.

11



Chapter 1. Introduction

Problem 1.1 (MAx-3-SAT). A 3-SAT instance is a Boolean formula given as a list of distinct
clauses. Each clause is a disjunction of three literals (a variable or its negation). The goal is
to find a truth assignment maximizing the number of satisfied clauses. We denote by n the
number of variables.

A central perspective in this thesis is that this problem can be viewed as maximizing a
cubic polynomial over the hypercube, i.e., a function f: {-1,1}" — R of the form

n

n n
f(Xl, cees x,,) =a+ Z bixi + Z CijXiXj + Z di,j,kxiXJ'Xk (1.2)
i=1 i,j=1

ijk=1

for real coefficients determined by the formula. Each truth assignment corresponds to a
vector x = (x1,...,%x,) € {—1,1}", and the maximum value of f over the hypercube equals
the maximal number of clauses that can be satisfied simultaneously.

Unless P = NP, Problem 1.1 cannot be solved exactly in polynomial time. Instead, we
study approximation algorithms for this problem, under the promise that the input formula
is satisfiable (i.e., when there exists an assignment satisfying all clauses).

As a baseline, a random assignment satisfies any clause with probability 7/8, so by
linearity of expectation, it satisfies on average a 7/8-fraction of the clauses. Hastad and
Venkatesh [HV04] show that sampling independently a polynomial number of random
assignments yields one that satisfies a 7/8 + Q(n~%/2) fraction of clauses.’

Conversely, Hastad [Has01] shows that unless P = NP, no polynomial-time algorithm
can find an assignment satisfying a 7/8 + ¢ fraction of clauses in a satisfiable 3-SAT formula,
for any constant ¢ > 0 (independent of n). This leaves a polynomial gap regarding how
much of a gain one can achieve compared to the guarantees of a random assignment.

Which of [Has01] or [HV04] truly reflects the power of efficient algorithms?

In this thesis, we give the first improvement on [HV04] using tools from convex opti-
mization. The formulation (1.2) will guide our approach, as with our next example, which
is an average-case variant of polynomial optimization.

1.1.2. Finding ground states in spin glass models

Our second example is a random optimization problem originating in statistical mechanics:
finding the configuration of minimal energy for atoms in disordered magnetic materials. In

! The analysis relies on a simple anti-concentration inequality and does not use the promise that the formula
is satisfiable. Hence, it also gives a lower bound on “how unsatisfiable” an arbitrary 3-SAT formula can be.
Improving it or proving a matching upper bound remains an open problem.

12



1.1. Motivating examples

a statistical physics model, each atom has a spin x;, and a spin configuration x = (xy, ..., xp)
has an associated energy H(x). At zero temperature, configurations concentrate on ground
states of the system, which are the minimizers of x — H(x).

The Sherrington-Kirkpatrick and the spherical model

The Sherrington—Kirkpatrick model [SK75] is a mean-field statistical physics model where
the energy function H is given by a random quadratic polynomial.

Problem 1.2 (Sherrington-Kirkpatrick model). Consider n atoms indexed by {1,...,n}.
Each pair {i, j} is independently assigned a random +1 coupling that favors alignment
(+1) or anti-alignment (—1) with equal probability. The goal is to partition the atoms into
two groups to maximize the “negative energy” (i.e., minimize the energy), defined as the
number of aligned pairs in the same group plus anti-aligned pairs in different groups.

Let A € R™" be defined by A;; = 1if atoms i and j tend to align, and A;; = —1 otherwise.
A is a matrix with i.i.d. random +1 entries (up to the symmetry). A partition into two
groups can be represented by a vector x € {—1, 1}", where the sign of x; indicates the group
assignment of atom i. Then the objective of Problem 1.2 becomes

1 n
xEI{riafi}" F I,JZ=:1 Ainixj ’ (1.3)
where the n!> normalization makes the optimum typically on the ©(1) scale, as we will
see below. The diagonal elements of A contribute negligibly as n — oo, so that (1.3) is
equivalent to optimizing over {x € R" : ||x||, < 1}.2

A natural, tractable upper bound on (1.3) is obtained by relaxing the Boolean constraint
to a spherical one, namely with 8" !(y/n) := {x € R" : ||x]||, = v/n}:

1 n
xS (yR) nls ”Z:l Ajjxix; . (1.4)
Unlike (1.3), (1.4) has a special spectral structure: it is equivalent to computing the largest
eigenvalue of A.

Though both are polynomial optimization problems, there are two key differences
between Problem 1.2 and Problem 1.1: (1) the objective function of the former is a homoge-
neous quadratic polynomial instead of a non-homogeneous cubic polynomial, and (2) we
now study the average-case setting where the coefficients of the polynomial are typical.® It
is also possible to directly view (1.3) as encoding a constraint satisfaction problem analogous
to 3-SAT, namely the Max-CuT problem on a not-too-sparse random graph [DMS17].

21If diag(A) = 0, this is a multilinear polynomial, whose maximum over the solid cube is attained at a vertex.
3 Most results in this thesis are universal, i.e., robust to different notions of “typicality” [CHO06].

13



Chapter 1. Introduction

Ground state energy

Numerical simulations suggest that both (1.3) and (1.4) converge to deterministic con-
stants as n — oo, with high probability over the randomness in A: These constants are
respectively P, = 1.52 for (1.3) and 2 for (1.4). Surprisingly, a rigorous explanation of this
phenomenon proved to be a major challenge for both mathematicians and physicists.

A simple union bound shows that (1.3) is O(1) with high probability: for fixed x €
{=1,1}", X; j Aijxix; is a sum of independent random variables, so is approximately Gaus-
sian with standard deviation O(n). It is thus exponentially unlikely to exceed Q(n®?).
Taking a union bound over the 2" possible choices of x completes the proof.* However,
this union bound argument, as well as its powerful refinements [Tal21], fall short of giving
sharp constants, and thus cannot explain the above observation.

The sharp constant in (1.4) follows from classical results in random matrix theory, using
the trace method [FK81, BY88]. The key idea is that while the largest eigenvalue of A
may not be directly accessible, the £,-norm of eigenvalues of A have a combinatorial
interpretation as a sum over walks encoded by A. Counting these walks for larger and
larger p provides increasingly tight approximation to the spectral norm of A, and a similar
argument also yields a matching lower bound. However, this approach heavily relies on
the spectral interpretation of the spherical constraint.

The case of (1.3) is far more subtle. In the 1980s, Parisi [Par80] predicted the existence of
a limit P, and expressed it as the solution of an optimization problem that is independent
of n. His influential insights remained non-rigorous for decades, eventually culminating
in a proof of existence of P, [GT02] and a proof of the Parisi formula by Guerra and
Talagrand [Gue03, Tal06]. A key idea underlying these works is interpolation between
Gaussian processes.

While powerful, these tools are highly specialized and technically involved. For instance,
the ground state energy of the bipartite Sherrington-Kirkpatrick model

n
SO
max i ijXiYyj
xye{-1,1}n n1,5 = J J

remains rigorously unknown to this day [CM25]. This suggests that existing methods may
be overly rigid.

Are there simple and robust methods for analyzing the value of random optimization
problems?

In this thesis, we propose a new framework for proving lower bounds on quantities such
as (1.3), using a basis for low-degree algorithms optimizing random quadratic polynomials.

* A similar approach using e-nets applies to (1.4).

14



1.1. Motivating examples

While mathematically rigorous, our approach parallels heuristic arguments from physics
based on the cavity method.

1.1.3. Sparsifying graphs

Our final examples depart from polynomial optimization per se, but we will see that similar
themes arise.

Graph sparsification is a fundamental compression primitive: given a dense graph, the
goal is to construct a sparse subgraph that approximates its structure. The sparsifier can
then be used to efficiently approximate queries on the original graph, leading to faster and
more memory-efficient algorithms, both in theory and in practice [ST14, BSST13, HGN"24].

Cut sparsification

We focus on the notion of cut sparsification [BK96], which aims to preserve the weight
of all cuts in the graph. For example, if an edge is critical in the sense that removing it
would disconnect the graph, it should appear in the sparsifier.

Problem 1.3 (Cut-preserving sparsifiers). Given an undirected graph G = (V,E), a cut
sparsifier of G with error ¢ > 0 is a weighted subgraph H of G such that

VScV, (1 =¢)cutg(S) < cuty(S) < (1+¢)cutg(S), (1.5)

where the cut value, cutg(S), denotes the total weight of edges in G with one endpoint in S
and one endpoint in V \ S (and similarly for H).

The results of Benczar and Karger [BK96] and Spielman, Teng, and Srivastava [ST11,
SS11] imply that any graph on n vertices admits a cut sparsifier with O(nlogn - £7%) edges
and error ¢ > 0. These constructions all use importance sampling: assign an importance to
each edge, sample edges independently proportional to these importances, and repeat until
the sparsifier reaches the desired size. This procedure also plays a central role in many
extensions of Problem 1.3 [Lee23, JLLS23, JLLS24].

As an illustration, consider the case where G is the complete graph.” By symmetry,
all edges are equally important, so the procedure reduces to sampling independently
m = O(nlogn - £7%) edges and assigning uniform weights so as to preserve the total edge
mass. A Chernoff bound implies that each subset of k < n vertices has cut value in the
sparsifier within 1 + ¢ of its value in G with probability at least 1 — e~ (e"mk/n) - A ynjon
bound over all (}) subsets succeeds precisely once m = Q(nlogn - €7%). The log n factor is
tight: random subgraphs of the complete graph with < nlogn edges are not connected.

> In this case, a cut sparsifier is equivalent to a combinatorial expander, except that we allow edge weights.

15



Chapter 1. Introduction

Yet independent sampling fails to find the best possible sparsifiers. Already in our toy
example, while Erdés-Renyi random graphs require average degree Q(logn) to expand,
there exist constant-degree expanders. In a breakthrough work, Batson, Spielman, and
Srivastava [BSS14] generalized this observation by showing that any graph admits a
sparsifier with O(n - £€7%) edges. Their algorithm is deterministic and based on convex
optimization. We will explore variants in Part III of this thesis.

From sparsification to discrepancy

More broadly, sparsification is abstracted as follows: given a collection (A;);e of vectors
or matrices, find a subset & C T and weights (w;)cs such that |§| < |T] and )} cs wsAs =
te7 A¢. In graph sparsification, the A; are the normalized Laplacian matrices of the edges,
and =~ means preserving quadratic forms over Boolean test vectors.

This formulation reveals a natural link to discrepancy theory. There, the goal is rather to
find a coloring x: T — {—1, 1} with low discrepancy ||} ;c7 x: A¢||, measured under some
norm ||-||. A natural sparsification strategy is to compute such a low-discrepancy coloring,
and retain only the elements assigned the minority color. The discrepancy guarantee
ensures the resulting sum approximates the original sum, but its support has shrunk by
a factor of 2. Iterating this process yields a sparsifier of the desired size.® This reduction
underlies several recent advances in sparsification [RR20, JRT24, RR22, BRR23, LWZ25].

Spencer’s theorem
Erdés asked the following question about the discrepancy of bounded vectors:

Problem 1.4 ({,-vector balancing). Define the discrepancy of a matrix A as

disc(A) := min [|Ax| - (1.6)

xe{-1,1}"

What is the largest discrepancy of a d X n matrix with entries in [—-1,1]?

An illustrative special case of Problem 1.4 is A € {0, 1}%*"

, interpreted as the incidence
matrix of d subsets of {1,...,n}. Every x € {—1,1}" is a coloring of the elements with two

colors. (1.6) asks for a coloring that minimizes the maximal color imbalance over all sets.

A standard upper bound comes from the probabilistic method: if x ~ {—1, 1}" is uniformly
random, each coordinate of Ax is approximately Gaussian with standard deviation O(+/n).
A Chernoff bound followed by a union bound over all d coordinates shows that A has a

coloring of discrepancy O(4/nlogd).

®When it succeeds, this reduction produces unweighted sparsifiers. In some settings, such sparsifiers may not

even exist. However, this can be relaxed using partial colorings x € [~1,1]” which have a constant fraction
of +£1 coordinates.

16



1.1. Motivating examples

Once again, this argument fails to give the sharp answer to Problem 1.4. This gap
is especially striking in the case d = n: the best known lower bounds to Problem 1.4
are random (or random-like) instances. They have discrepancy (1 + o(1))+v/n with high
probability, yet the probabilistic method yields an extra y/log n factor. In a seminal work,
Spencer [Spe85] proved that every A € [—1,1]™" has a coloring with discrepancy at most
6+/n. This result gave the paper its memorable title: Six standard deviations suffice.

The failure of the probabilistic method suggests that low-discrepancy colorings are rare
and so perhaps also hard to find algorithmically. Bansal [Ban10] refuted this intuition
by giving a polynomial-time algorithm achieving discrepancy O(+/n) for d = n. This
breakthrough opened a new algorithmic perspective on discrepancy theory, leading to
many further works [LM15, ES18, Rot17, LRR17, BDG19, BDGL19, BM20, BLV22].

Outstanding questions

Despite this progress, many variants of Problem 1.3 and Problem 1.4 remain open:

1. Matrix Spencer problem: Given symmetric matrices Ay, ..., A, € R™" of spectral
norm at most 1, does there always exist a coloring x € {—1,1}" such that }}; x;A;
has spectral norm O(+/n)? This is the non-commutative analog of Problem 1.4, with
connections to quantum information theory [HRS22, B]M23]. Despite significant
interest, only special cases have been resolved [LRR17, HRS22, DJR22, BJM23].

2. Komlés (and Beck—Fiala) conjecture: It states that if A € R®" has columns of £,-norm at

most 1, then it has discrepancy O(1). It is a sparse or multiscale analog of Problem 1.4.
The best-known bound is O(4/log n) [Ban98, BDG19, BG17, BDGL19].

3. Tight constants in Problem 1.3 and Problem 1.4: A lower bound on the number of
edges needed to sparsify any graph is provided by the minimal number of edges an
expander must have (as given by Alon-Boppana bound). The best construction uses
twice as many edges [BSS14]. Similarly, the constant 6 in Spencer’s original result
has only been slightly improved [Bel13].

4. Kadison—Singer problem: Can we find unweighted sparsifiers of unweighted graphs
when all edges have equal importance? Such sparsifiers are known to exist [MSS15],
but no efficient algorithm is known for finding them.

5. More broadly, extra y/log d factors appear throughout computer science as artifacts
of applying Chernoff or matrix Chernoff bounds. Removing these is a major bottle-
neck: for instance, through the analysis of Kikuchi matrices, this would have strong
consequences in extremal combinatorics [HKM?23] and coding theory [AGKM23].

In this thesis, we develop a new approach to Problem 1.4 that not only improves existing
bounds, but also sheds light on several of these outstanding questions.

17



Chapter 1. Introduction

1.2. Algorithms beyond the union bound

In recent years, tools from continuous optimization have begun to challenge the classical
union bound argument. A unifying principle underlies these advances: many extremal prob-
lems reduce to minimizing a low-degree polynomial function (Problem 1.1 and Problem 1.2)
or the norm of a linear function (Problem 1.3 and Problem 1.4).

1.2.1. Polynomial optimization

We begin with a fundamental problem capturing Problem 1.1, Problem 1.2, and many more:
polynomial optimization. Let p be a degree-3 polynomial in n variables:

n

n n
p(x)=a+ Z bix; + Z Ci jXiXj + Z di j kXiX X .
i=1

i,j=1 ij,k=1

More generally, we will consider polynomials of constant degree, while the number of
variables n goes to infinity. The quadratic and cubic cases capture most phenomena of
interest; higher (but constant) degrees typically follow similarly.

Our goal is to optimize p over a domain Q C R"™:
max p(x) . (1.7)
x€Q

(1.7) is a non-convex optimization problem. While Q can encode a variety of constraints,
we will focus on two canonical settings: the unit sphere Q = {x € R" : ||x||, = 1} and the
hypercube Q = {—1,1}". The former corresponds to unconstrained optimization, while the
latter is a proxy for constrained optimization. We note that the discrete nature of {-1,1}"
will not be a crucial feature for us (for multilinear polynomials, there is no difference
between optimizing over [—1,1]" or {-1,1}").
The general formulation (1.7) is remarkably expressive. It captures a wide range of
problems across computer science and physics:
« constraint satisfaction problems such as Problem 1.1, solving sparse linear equations
over Fy (Max-k-XoRr), or finding the maximum cut in a graph (Max-Cur);
« finding ground states in spin glass models, such as the Sherrington-Kirkpatrick model
(Problem 1.2) for degree-2, or pure 3-spin models for degree-3;
« computing the injective norm of a tensor [BBH"12];
« finding a planted clique in a random graph [FK08];
« finding optimal Lyapunov certificates of stability in control theory [Par00];
« the best separable state problem [BKS17] and the QMA(2) vs EXP conjecture in
quantum information [AIM14].
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1.2. Algorithms beyond the union bound

However, most prior work on polynomial optimization has focused (often exclusively)
on degree-2 polynomials. This reflects a fundamental barrier: the techniques used to study
quadratic polynomials often break down entirely when moving to higher degrees.

1.2.2. Linear algebra for tensors

A guiding intuition is that the coefficients of a homogeneous quadratic polynomial form
a matrix, while those of a cubic polynomial form a tensor. This effectively limits the
applicability of standard linear algebraic tools (spectrum, rank, trace powers, etc.) to
higher-degree polynomials. While many attempts have been made to generalize these
notions to tensors, the resulting theory remains limited.

To illustrate, consider an Erdés-Renyi random graph where each edge appears inde-
pendently with probability p. Define the centered adjacency matrix A by A;; = 1 —p
if there is an edge {i, j} and A;; = —p otherwise. The spectral norm of A, i.e., ||Al, :=
MaX||x|,=|lyll,=1 21 j=1 AijXiYj, is @ widely used spectral certificate. For example, it can be
used to upper bound the maximum cut or the maximum independent set of random
graphs [Trel7a]. The analysis of this certificate relies on a textbook bound of the form:

Lemma 1.5 ([FK81, FKS89, FO05]). Ifnp = Q(logn), then ||A|l, = O(4/np).

However, the typical approach to prove Lemma 1.5 uses the trace method, a technique
with no natural analog in the tensor setting. This is a recurring theme for many problems
involving random graphs. As a result, these basic questions remain poorly understood in
the analogous random hypergraph models.

Can we extend Lemma 1.5 to tensors, and if so, how?

We answer this question in the affirmative by introducing a new approach that bypasses
the trace method and yields stronger results than those obtainable via a simple union bound.
In the long term, we hope that such techniques will contribute to the development of a
spectral theory for random hypergraphs with power and versatility comparable to that of
the well-established spectral theory of random graphs.

1.2.3. Approximation algorithms

The increase in complexity is also reflected algorithmically: while optimizing arbitrary
degree-2 polynomials over the unit sphere is tractable, the degree-3 case is NP-hard. Here
are hard instances for this problem, coming from the reduction of Nesterov [Nes03]:
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Example 1.6 (Maximum clique as a degree-3 polynomial). Given any graph G = (V, E),
define a cubic polynomial over variables x indexed by V' U E as follows:
f(x) = Z XyXpXe -
e={u,v}eE
RVUE

Maximizers of f over the unit sphere of
which are NP-hard to find.

correspond to maximum cliques in G [MS65],

This reduction actually reveals a deeper phenomenon: when moving from degree-2 to
degree-3, the spherical maximization problem becomes hard to solve even approximately.

Definition 1.7. An algorithm achieves approximation ratio « > 1 if it always outputs a
solution with value at least 1/« times the optimum.

Assuming the exponential time hypothesis, optimizing n-variate cubic polynomials over
the sphere within a exp(log%_g n)-factor takes exponential time for any ¢ > 0 [BBH"12].
It is plausible that the truth is even worse: the best-known polynomial-time algorithms
achieve only O(+/n)-approximation [HLZ10, HKPT24]. These algorithms rely on the same
technique of rounding semidefinite programming relaxations of the problem. Stronger
lower bounds are known for this approach: they cannot achieve approximation ratio better
than O(n!'/*), even in subexponential time [HSS15, PR22].” This barrier is qualitatively
different from the NP-hardness in Example 1.6: it arises even for random instances.

1.2.4. Certifiable approximation

A subtle issue arises with approximation algorithms in the presence of randomness. In
such cases, we typically ask that the approximation guarantee holds with high probability.
Ideally, an algorithm should also not only perform well on average — it should know when
it does. This leads to the notion of certifiability: an approximation algorithm has certifiable
guarantees if it either returns a solution with a provable guarantee on its quality, or outputs
“Idon’t know”. For maximization problems such as (1.7), such a certificate often takes the
form of an efficiently computable upper bound on the optimum — one that (1) always holds,
and (2) is, with high probability, close to the true optimum.

Certifiability is desirable (both in theory and in practice) since it connects naturally
to robustness. For instance, an algorithm that certifies an upper bound on the maximum
of a random polynomial can be repurposed to recover a low-rank signal planted in its
coefficients [HSS15]. However, this flexibility comes at a cost: certifiable approximation is
sometimes much harder than the underlying search problem.

"These lower bounds implicitly only formally apply to the canonical relaxation. As we will see, some
algorithms with slightly better guarantees use alternative formulations.
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1.2. Algorithms beyond the union bound

This gap is especially visible in Problem 1.2. On the one hand, evidence from [MRX20,
KB21, GJJ"20] suggests that the best efficient certifiable approximation is given by com-
puting the optimum of the spherical relaxation (1.4), followed by rounding the solution
to a Boolean vector. On the other hand, algorithms that do not produce certificates can
get arbitrarily close to the optimum of (1.3). This suggests a fundamental “certification—
optimization” gap: a difference between what we can find, and what we can certify [Kun21].

Remarkably, a similar phenomenon appears even on deterministic input. For maximizing
arbitrary cubic polynomials over the hypercube, the only known approximation algorithm,
due to Khot and Naor [KN08], is randomized and does not provide any certificate.

Is there a certification—optimization gap for the guarantees achieved by [KN08]?

We show that the answer is no, by introducing an approximation algorithm with certifi-
able guarantees matching the result of Khot and Naor. Moreover, we show that certifiable
guarantees can guide the design of new algorithms, including our result for Problem 1.1.
Our approach is based on convex relaxations of polynomial optimization.

1.2.5. Roundings of convex relaxations

Rather than solving directly (1.7), we solve a relaxed convex problem, whose optimal dual
solution provides a certifiable upper bound on the optimum. The main challenge lies in
turning this certificate into a feasible solution for the original problem. However, rounding
algorithms beyond the quadratic case remain poorly understood.

The sum-of-squares hierarchy

The sum-of-squares (SoS) hierarchy of convex relaxations is a general framework for
designing approximation algorithms, consisting of two steps:

1. Optimize the objective over a relaxed set of solutions with the ellipsoid method.

2. Round the optimal relaxed solution to a feasible solution for the original problem.
Under the Unique Games Conjecture, this strategy achieves the best-possible approximation
factor for any constraint satisfaction problem [Rag08].?

SoS relaxations operate on objects called pseudo-expectations. A degree-d pseudo-
expectation is a linear map E: R[x1,...,xXp]<¢ — R that mimics the behavior of an
expectation under some distribution, but only for polynomials of degree at most d. It
satisfies self-consistency conditions such as E p(x)? > 0 for all polynomial p of degree at
most d/2, which holds trivially for actual expectations.

8 This result holds up to an arbitrary small constant additive error in the approximation guarantees. In
particular, it is vacuous for the “advantage over a random assignment” regime we target for MAX-3-SAT.
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The set P;(Q) of degree-d pseudo-expectations over domains Q such as the sphere or
the hypercube is convex and admits an efficient separation oracle. Thus, the degree-d SoS
relaxation of (1.7):

_max E p(x)

EePy(Q)
is a convex program that can be solved (to high precision) in time n®?. Note that the
degree of the relaxation must be at least as large as the degree of p.

Roundings for quadratic optimization

As with linear programming, the main challenge lies in the rounding step: Given an SoS
solution E € Py(Q), we seek an efficiently samplable distribution D supported on Q such
that Ex.p p(x) is not too small compared to E p(x).

In the quadratic case, there is a generic rounding procedure. Since E satisfies the
constraint E (x — Ex, u)? > 0 in any direction u, we can sample a Gaussian vector

g~ N(Ex, (x —Ex)(x —Ex)T) ,

whose first and second moments perfectly match those of the SoS solution. Rounding
reduces to the task of mapping g to a feasible point x € Q, e.g. by taking the sign [GW95] or
truncating and rescaling [CW04]. Some examples of the many algorithmic applications of
this simple rounding include approximation algorithms for 2-variable constraint satisfaction
problems, cut norms of matrices [AN06], and correlation clustering [CW04]. See §8.1.2 for
additional background.

Roundings for higher-degree optimization

In sharp contrast, there are very few known rounding techniques for higher-degree
sum-of-squares relaxations. One notable exception is global correlation rounding [BRS11],
which proceeds by repeatedly sampling variables from their marginal distribution under the
pseudo-expectation, and conditioning on the outcome. It has been successfully applied to
quadratic optimization problems such as Max-Cut and generalizations [BRS11, RT12], list
decoding of error-correcting codes [JST23], expansion [GS11], and graph coloring [AG11].
All these applications rely on structural assumptions about the coefficients ensuring that
each conditioning step reduces the variance of the SoS solution. Such assumptions do not
hold for the general class of problems considered in this thesis.

In fact, even the simple problem of rounding a convex relaxation of cubic optimization
is not well understood. The only general result is the rounding scheme of [BGG"17] of
(a variant of) polynomial optimization achieving O(y/n)-approximation’ over the unit

? [BGG'17] considers the variant where one wants to maximize the absolute value of a polynomial and this
distinction makes a material difference to the difficulty of the problem.
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sphere. Over the hypercube, no known rounding algorithm (for any convex relaxation)
achieves non-trivial guarantees. The only approximation result for cubic optimization
over the hypercube is [KN08], that circumvents convex relaxations and uses instead anti-
concentration and techniques from convex geometry.

Understanding rounding for higher-degree polynomial optimization is tightly connected
to major open problems. We already mentioned that Problem 1.1 is a cubic optimization
problem, whose approximability remains open. Further, sufficiently strong (and yet far
from what known hardness results and integrality gaps rule out) approximation algorithms
for special cases of degree-3 and degree-4 polynomial optimization can refute the Small-Set
Expansion [BBH"12] hypothesis, settle the Aaronson-Impagliazzo-Moshkovitz [AIM14]
conjecture that relates to the power of quantum entanglement, and refute the celebrated
planted clique hypothesis [FK08].

In short, the lack of rounding algorithms for high-degree SoS relaxations is a central
roadblock in our understanding of polynomial optimization beyond the quadratic case.
Developing new tools to overcome this barrier is one of the goals of this thesis.

1.3. Detailed overview of our contributions

This thesis offers new algorithmic perspectives on optimizing: random quadratic polynomi-
als (§1.3.1), random sparse cubic polynomials (§1.3.2), arbitrary cubic polynomials (§1.3.3),
and discrepancy objectives (§1.3.4).

1.3.1. Fourier analysis of random quadratic optimization

Our first contribution is a new framework for analyzing algorithms that optimize random
quadratic polynomials. The approach is built on a basis of Fourier diagrams that captures
the asymptotic behavior of symmetric, low-degree iterative algorithms.

Indeed, recent years have seen the emergence of new algorithms for random polynomial
optimization problems. While the power method and its variants can solve (1.4), Mon-
tanari [Mon19] proposed a polynomial-time algorithm that, assuming a widely believed
statistical physics conjecture, finds a maximizer of (1.3) to arbitrary constant accuracy as
n — oo. On a high level, Montanari’s algorithm is a nonlinear generalization of the power
method, where the nonlinearities are used to enforce the Boolean constraints.

However, both the algorithm and its analysis are relatively difficult to motivate and
describe at this point. To better understand the mechanisms behind this algorithm and its
potential for proving lower bounds in random optimization, we introduce a new framework
in Part I to analyze nonlinear iterations.
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Nonlinear iterative algorithms on random matrices

We consider algorithms taking as input a quadratic polynomial p(x) = X!;_; Ajjxix;
whose coefficients A;; are symmetric (A;; = Aj;), but are otherwise independent mean-0,
variance—% random variables. These algorithms output a vector x € R", which for example
may be a feasible solution to (1.3) or (1.4). Our goal is to analyze them, e.g., by computing

the objective value that they achieve.

The best-known algorithms for such tasks, in null models [Sub20, Mon19, EM20, EMS21,
Sel24] as well as in models with a planted signal [RF12, MR16] belong to the class of gener-
alized first-order methods [CMW20]. These algorithms start from an arbitrary initialization
xo = (1,...,1). At each step, they either (1) multiply the current state by A (x;+1 = Ax;); or
(2) apply a polynomial function coordinate-wise (x;+; = f;(x;), for some constant-degree
polynomial f;: R — R). The algorithm outputs x7 after a constant number T of iterations. '

These nonlinear generalizations of the power method have two key features:

1. They are S,-symmetric: swapping the indices of two rows and columns of A results
in a corresponding swap in the output vector.'!

2. Each output is a low-degree polynomial function of the entries of A. Low-degree
polynomials are an expressive class of algorithms [Wei25].

Our toolkit provides several new insights into the behavior and algorithms with such
features. First, it provides an explicit description of the joint distribution of their iterates as
n — oo, leading to a simple analysis of why they succeed. Such compact descriptions were
previously known only for a more restricted class of algorithms. Second, in contrast to all
previous mathematically rigorous approaches, it closely mirrors the analysis of nonlinear
iterative algorithms in physics (via the cavity method). In particular, it offers a simple
combinatorial interpretation of concepts that physicists used to guide the design of their
impressive algorithms, such as approximate message passing and Onsager correction terms.
This combinatorial perspective suggests principles for designing new algorithms, and in
turn lower bounds on the optima of random maximization problems.

The Fourier diagram basis

We introduce the Fourier diagram basis, an orthogonal basis of &,-symmetric polynomials
for expressing nonlinear iterative algorithms. Each Fourier diagram is represented by a

%This in fact is not sufficient for the planted models mentioned earlier, that require O(log n) iterations to
obtain non-trivial correlation with the signal from random initialization; see §5.5.

"Why this is without loss of generality may be explained by the fact the random matrix distribution satisfies
the same symmetry; see [KMW24, §3.4] for related results.
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rooted graph a = (V(a), E(«)) and expresses a vector-valued polynomial Z,(A) € R™

Z4(A); = Z ]_[ Apwot), forallie [n], (1.8)
0: Vi@ In] {wo}eE ()
@(©)=i

where © € V() is the root vertex. The first few basis elements are depicted on Figure 1.1.

ZA) | 1 DA | A | ) AijAuAje
o 1 _] " ],k
JFi k#j#i k#j#i

Figure 1.1. Some Fourier diagrams with the symmetric polynomial that they express.

We emphasize that we sum over injective maps ¢: V() < [n] in (1.8). This is a crucial
point for all the following results and the key novelty from this work; see §2.5 for a
description of the basis obtained by summing over arbitrary ¢.

Chapter 2 shows that the iterates of nonlinear iterative algorithms can be expanded
as linear combinations of Fourier diagrams (1.8). Thus, to understand the (asymptotic)
behavior of such algorithms, it suffices to describe the (asymptotic) joint distribution of the
basis elements. This is the purpose of our first main result, established in Chapter 3. The
joint distribution of the Fourier diagrams can be read directly from their graph structure:

Theorem 1.8 (Informal version of Theorem 3.14). The joint distribution of {Z,(A)} as

n — oo is given by:
1. {Z.(A) : T tree whose root has degree 1} are asymptotically independent Gaussian vec-
tors with independent coordinates. We refer to these diagrams as Gaussian tree diagrams.

2. Foralltreet, Z (A) is asymptotically a multivariate Hermite polynomial in the Gaussian
tree diagrams.

3. If a is connected and has a cycle, then Z,(A) is asymptotically negligible (i.e., its entries
are on a scale at least \/n smaller than the tree diagrams).

For example, in Figure 1.1, asymptotically: the second diagram is a Gaussian vector,
the third diagram is a Hermite polynomial in this vector (in fact, the degree-2 Hermite
polynomial), and the fourth diagram is negligible.

The key takeaway from Theorem 1.8 is:

Only the restriction on tree diagrams matters.
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This fact has a simple combinatorial intuition. Suppose that A is normalized to have entries
of variance % Then (1.8) is a sum over n/V(®I=1 terms, each of which being of magnitude
n~IE(@I/2_If we heuristically treat these terms as independent, cancellations make (1.8) of
order nz(V(@I-E@I-1) \which remains constant precisely when « is a tree. Every additional
edge makes the diagram smaller by a factor v/n.

What insight do we gain by focusing on tree diagrams? The key advantage is that
algorithmic operations in generalized first-order methods have simple combinatorial in-
terpretations when expressed in the tree diagram basis. First, as Theorem 1.8 suggests,
applying a Hermite polynomial entrywise to a Gaussian tree diagram asymptotically pro-
duces another tree diagram. More generally, a nonlinear polynomial can be applied to a
diagram by expanding it in the Hermite basis and acting term by term.

Nonlinearities cannot increase the depth of a tree diagram. Only applying one iteration
of the power method can do so:

Theorem 1.9 (See §3.5). Let t be a Fourier tree diagram. Then A - Z,(A) is asymptotically
the sum of Z,+(A) and Z - (A), where t* (resp. T~ ) is obtained by extending (resp. contracting)
the root of T by one edge.

Figure 1.2 summarizes how Fourier tree diagrams evolve under algorithmic operations.

A-x = x' + x
(a) Applying a Hermite polynomial en- (b) Multiplying by A creates a forward
trywise to a Gaussian tree diagram and a backward term.

grafts copies of the tree at the root.

Figure 1.2. The effect of algorithmic operations on the Fourier tree representation.

Theorem 1.9 sheds light on a special class of generalized first-order methods: approximate
message passing (AMP) algorithms. For example, Montanari’s algorithm for Problem 1.2
belongs to this class. Originally developed in physics, AMP algorithms are designed to
produce Gaussian iterates by subtracting a carefully chosen correction term (the Onsager
correction) at each iteration. While the mathematical expression of this correction is often
viewed as intricate, we show in Chapter 4 that it exactly cancels the 7~ term in Theorem 1.9.
The remaining 7" term is a Gaussian tree diagram by Theorem 1.8, which explains why
AMP iterates remain Gaussian.
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The cavity method and free probability

Taken together, Theorem 1.8 and Theorem 1.9 yield a simple two-step procedure for
analyzing the performance of generalized first-order methods:

1. Construct the tree approximation (x;);>¢ of the original iterates (x;);>o by applying
the algorithmic operations only to tree diagrams. We show that ||x; — X;||o, < n~'/?
(Theorem 3.17).

2. Compute the objective value achieved by X;. For quadratic objective functions, it
converges to (X;, X, +x, ) by Theorem 1.9.

A key insight is that the combinatorics of the tree approximation mirrors the indepen-
dence assumptions of the non-rigorous cavity method from physics (see §4.1 for background
on the cavity method). We demonstrate the connection in Chapter 4 by making multiple
heuristic physics arguments analyzing message-passing algorithms fully rigorous:

« equivalence between belief propagation and AMP (Theorem 4.1);

« independence of messages incoming at a vertex (Theorem 4.9);

« the state evolution formula (Theorem 4.10).
While these results have appeared in previous work, existing proofs (such as those based
on Bolthausen’s conditioning method [Bol14]) are technically involved. In contrast, our
approach follows exactly the physics derivation, and formalizes every heuristic equality by
showing that the equality actually holds rigorously up to a sum of cyclic Fourier diagrams,
which are negligible by Theorem 1.8.

Working directly in the tree basis also allows us to characterize the optimal symmetric,
constant-degree algorithm for constrained random quadratic optimization, yielding the
following lower bound on the optima of both (1.3) and (1.4):

Theorem 1.10 (see Theorem 6.9). Let T be a collection of one-dimensional random variables
indexed by rooted trees, whose distributions match the asymptotic distribution of a single
coordinate of the tree diagrams from Theorem 1.8. Then for any integer p > 2,

n
s . . — . 1_2 . +
”;rﬁaicl Z Ajjxixj 2 (2-0(1)) -n » ZersngrﬁmE [ZZ ] . (1.9)
Peij= E§P<1

We illustrate Theorem 1.10 by recovering a tight lower bound for the spherical model
in Chapter 6. Although similar algorithmic lower bounds have been explored for planted
models [MR16] and spin glass models [EMS21], the key novelty is that the optimization
problem on the right-hand side of (1.9) has a simple combinatorial interpretation. On the
one hand, the objective E [ZZ"] encourages mass to be spread across many translated
Gaussian diagrams; on the other hand, the constraint E Z? < 1 can only be satisfied if each
Gaussian is offset by Hermite tree diagrams depending on it. Describing the optimizer in
the limit p — oo is an exciting open problem raised in this thesis.
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Finally, our framework also connects naturally with free probability. Voiculescu [V0i91]
pioneered the analysis of the spectrum of large random matrices by relating them to their
idealized infinite-dimensional version living in the so-called Fock space. The path diagrams
in the set T from Theorem 1.10 form an explicit basis for this Fock space.'” These path
diagrams suffice to encode spectral information because the power method involves no
nonlinearities, and Theorem 1.9 preserves path diagrams. The remaining tree diagrams in T
enrich the space to encode constrained optimization, playing a role analogous to that of free
probability in the unconstrained (¢;) case. This connection underlies a recent generalization
of the Fourier diagram method to deterministic delocalized matrix ensembles, via the theory
of traffic probability [GJKP25].

The long-time behavior

The analysis so far applies to algorithms that run for a constant number of steps. This
suffices for Problem 1.2, where constant-factor approximation is conjectured to be achieved
after constantly many iterations. By contrast, in statistical estimation problems (e.g. the
spiked Wigner model; see Example 2.3), Q(logn) iterations are required to extract a
planted signal starting from a random initialization. This presents a major challenge for
existing analyses of iterative algorithms, which either make unrealistic assumptions such as
assuming access to a warm start, or rely on complex and problem-specific arguments [RV18,
MV21, MV22, LW22, LFW23].

Theorem 1.8 does not extend either to this long-time regime in general. The idea is that
nonlinear algorithms can exploit high moments of the input, breaking universality (see §5.4).
However, in Chapter 5, we show that the tree approximation remains valid for an iterative
algorithm approximating the top eigenvector of a random matrix. These results suggest
a path toward a mathematical analysis of a ubiquitous but in many cases non-rigorous
statistical physics algorithm: message-passing from random or spectral initialization.

1.3.2. Multiscale union bound for random hypergraphs

We next switch from dense to sparse random polynomials, and describe our extensions of
the results of §1.2.2 to cubic polynomials. We develop a multiscale union bound argument
that generalizes the guarantees of the trace method for Lemma 1.5 to tensors.

Friedman and Wigderson [FW95] defined the second eigenvalue of hypergraphs or
tensors, generalizing the second eigenvalue of the adjacency matrix of a graph:

Definition 1.11 (Friedman-Wigderson second eigenvalue). Let T be adjacency tensor of
an Erdés-Renyi 3-uniform hypergraph, i.e., T;jx = 1 with probability p and T;;; = 0 with

2The author thanks Tim Kunisky and Robert Wang for discussions leading to this observation.
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probability 1 — p, independently for all triplets of distinct vertices {i, j, k}. Let

n

Z Tijkxiyjzi, Apw(T) :=||T -ET]| .

L,j.k=1

1Tl =

= ma
Ixll2=llyll;=llzll,=1

[FW95] asked when random hypergraphs exhibit a spectral gap, in the sense that Apyw (T)
is bounded away from ||T||. We refer to such hypergraphs as quasi-random, in analogy with
the converse of the expander mixing lemma [BL06]. [FW95] showed that random regular
3-uniform hypergraphs become quasirandom once the number of hyperedges is Q(n?).

For Erd6és-Renyi hypergraphs, the threshold as a function of the average number of
edges m := p(}), appears much smaller. This can be shown by flattening the tensor into
an n* x n® matrix, and bounding its norm with the spectral norm of that matrix. This
technique is widely used for designing spectral certificates, e.g. in the context of refutation
of constraint satisfaction problems [AOW15]. In our setting, this argument implies that
Erdés-Renyi hypergraphs are quasi-random once m > n'* polylog(n). Moreover, these
extra polylog(n) factors are necessary when using this certificate.

Chapter 7 establishes:
Theorem 1.12 (Informal version of Theorem 7.3). ||T|| — Apw(T) = ©(pn'?)

As a corollary, Erdés-Renyi hypergraphs are quasi-random as soon as m = Q(n').

How to prove Theorem 1.12? As discussed earlier, the flattening bound incurs superfluous
logarithmic factors, and the trace method from Lemma 1.5 does not generalize to tensors.
A natural candidate for a sharp answer is (generic) chaining, a sophisticated union bound
technique known non-constructively to give tight bounds up to constant factors [Tal21].
Prior work has constructed chaining bounds for related problems, but these still incur
logarithmic losses [BR16, BGJ*25]. A tight generic chaining construction here is expected
to be technical, due to the intricate geometry of the underlying metric space [LvHY18].
This mirrors the long-standing open question of proving general matrix concentration
bounds using chaining [Rud99].

Instead, our proof of Theorem 1.12 uses a direct multiscale union bound argument,
extending an approach initiated by Kahn and Szemerédi [FKS89]. We believe that this per-
spective may guide tighter chaining constructions for tensors, with potential applications
to problems such as hypergraph sparsification [Lee23].

1.3.3. Roundings beyond quadratic polynomials

In this section, we move from random to worst-case cubic polynomial optimization. We
develop new rounding algorithms for this problem over the sphere and the hypercube,
improving the best known approximation guarantees.
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Our first main result is an improvement over the coin flipping argument of Hastad and
Venkatesh [HV04] for Problem 1.1:

Theorem 1.13 (see Theorem 8.29). There is a polynomial-time algorithm that, given a
satisfiable 3-SAT formula, outputs an assignment satisfying a % + Q(n~%/*) fraction of the
clauses.

Known results are summarized on Figure 1.3.

E Easy ' Easy ” " NP-Hard

! [HV04] 1 [thiswork] b % [Has'01]

7 T, o2 T g 7 )
g 3 +n g +n 3 + Q(l)

Figure 1.3. Known and new approximation guarantees for satisfiable 3-SAT instances.

The proof of Theorem 1.13 relies on the polynomial formulation from (1.2). Depending
on whether the degree-1, 2, or 3 part of the polynomial dominates at an optimal solution, we
apply different strategies. When the degree-1 or 2 parts dominate, standard approximation
algorithms for quadratic polynomials can be applied. When the degree-3 part dominates,
this requires a new rounding algorithm that we present next.

Our second main result is a rounding algorithm for homogeneous cubic optimization:

Theorem 1.14 (Informal; see Theorems 8.14 and 8.22). Foreveryk > 6, thereis an n%®) _time
algorithm that rounds the canonical degree-k sum-of-squares relaxation for a homogeneous
multilinear cubic maximization problem (over the unit sphere or the hypercube) and achieves

an O(+/n/k) approximation.

This improves on the prior result of [BGG"17], which gave a similar guarantee over the
sphere only. Their approach uses “weak decoupling” inequalities and involve reasoning
about eigenvectors of the SoS solution. In particular, such techniques seem to have no
natural analogs over the Boolean hypercube.

To prove Theorem 1.14, we introduce a new rounding algorithm based on polynomial
reweighting, an operation on pseudo-expectations analogous to reweighting a probability
distribution by a low-degree polynomial.

Our third result shows that there is a different, compressed, SoS relaxation of the problem
of size 20%) . poly(n) (instead of n°)), preserving the guarantees of Theorem 1.14:

Theorem 1.15 (Informal; see Theorems 8.17 and 8.23). There is a 209 n%W _time algorithm
that takes input a homogeneous multilinear cubic polynomial f (x) in n variables and outputs
an assignment that achieves an O(~\/n/k)-approximation to the optimum of f over the hy-
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percube or the unit sphere. Moreover, our algorithm is obtained by rounding a semidefinite
programming relaxation of the cubic optimization problem.

Over the sphere, Theorem 1.15 improves the approximation guarantees of [BGG"17].
In particular, we obtain an O(4/n/log n) approximation algorithm in polynomial time, as
opposed to quasi-polynomial time in [BGG*17]. Over the hypercube, our algorithm for
Theorem 1.15 is deterministic and our guarantees in the polynomial-time regime match the
ones of [KNO08]. This answers affirmatively the question asked in §1.2.4 about whether the
guarantees of [KN08] had any certifiable analog.

The proof of Theorem 1.15 relies on derandomizing a crucial set of inequalities that
arise in our rounding algorithm via polynomial reweightings. Unlike prior pruning ap-
proaches [GS12, BRS11], which reduce the number of constraints or variables in the relax-
ation, our construction adds a small number of carefully chosen auxiliary variables and
constraints. This approach is reminiscent of the degree-reduction method of Steurer and
Tiegel [ST21] in robust statistics, though their result exploits problem-specific structure.

1.3.4. Discrepancy minimization via regularization

The iterative algorithms for spin glass models described in §1.3.1 can be interpreted as
second-order methods finding stationary points of a regularized version of the polynomial
objective, known as the TAP free energy [Sub20, Mon19, JSS25]. In Part III, we reinterpret
this idea to design new algorithms for worst-case discrepancy minimization.

To illustrate this approach, consider Problem 1.4. Up to duplicating rows to account for
both A and —A (see Remark 9.2), the goal is to minimize the discrepancy objective

x € {-1,1}" — max (Ax); = max (r, Ax) , (1.10)
i€[n] relg
where A = {r e RY : >4 =1}

Early algorithmic approaches to Spencer’s theorem use a sticky walk in [—1, 1]" [Ban10,
LM15], which maintains a partial coloring x € [—1,1]" and freezes each coordinate x; once
it reaches +1. However, these algorithms operate in multiple stages to balance discrepancy
and freezing constraints, and do not naturally fit into a continuous optimization framework.

This mismatch arises because (1.10) is not well suited to standard continuous optimization.
For example, sticky gradient descent on [—1, 1]" reduces to selecting the row a; of A that
maximizes |(a i x)| for the current partial coloring x, and stepping in the +a; direction.
Yet this strategy fails to make progress: starting from the origin, the first gradient step is
immediately pulled back, as the gradient points back to zero. Second-order methods appear
to offer no help either, as the objective is piecewise linear.

We revisit the continuous optimization perspective and show that, with an appropriate
use of regularization, it can be made effective for discrepancy objectives. Specifically, we
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introduce a regularized version of (1.10) by adding a concave function w: R — R that
encourages the mass of r € A; to be spread across coordinates:

d
Dp(x) = max (r, Ax) + Z w(rj). (1.11)
reiy =

Our algorithm is a second-order method: a sticky variant of Newton method applied to ® 4.
To prevent the oscillatory behavior observed with gradient descent, we constrain updates
to lie in the subspace orthogonal to the current partial coloring x.'?

The behavior of (1.11) depends on the regularizer w, and we leverage this flexibility to
adapt our framework to different settings. For Problem 1.4, we show in Chapter 9 that
choosing w(r) = r? for p € (0, 1) yields an algorithm matching Spencer’s guarantees. The
special case p = % recovers the potential function used in [BSS14] to construct linear-size
graph sparsifiers.

One key advantage of the optimization viewpoint is that it enables modular proofs
of “best of both worlds” results by summing multiple objectives of the form (1.11). This
perspective has been central in algorithmic discrepancy theory, and has been repurposed for
sparsification [JRT24] and for rounding linear programming relaxations in combinatorial
optimization [Ban19]. It also underlies the applications developed throughout this thesis.

Tighter constant for Spencer’s theorem

In Chapter 11, we show — mirroring Spencer’s original paper — that in fact, 4.1 standard
deviations suffice. Moreover, such a coloring can be found efficiently with our second-order
optimization algorithm.

Theorem 1.16 (Informal version of Theorem 11.1). Any A € [—1,1]™" has discrepancy at
most 4.1+/n. Moreover, such a coloring can be found in polynomial time.

The best known asymptotic lower bound for this constant is 1, attained when A is a
random matrix, or a structured matrix with similar properties such as a Hadamard matrix.
For small n, numerical simulations suggest the existence of structured matrices whose
discrepancy is close to 2.

Motivated by Theorem 1.16, we also attempted to improve the constant in the size-
approximation tradeoff for graph sparsifiers. However, we provide evidence in §11.4 that
our discrepancy-theoretic framework may not improve this constant. This is because it
cannot easily distinguish normalized edge Laplacian matrices from general normalized
sums of rank-one matrices, for which we conjecture that such improvements are impossible.

BThis constraint also appears in algorithms for random polynomial optimization [Sub20].
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Random-like instances of Komlds conjecture
In Chapter 10, we prove that Komlds conjecture holds for pseudorandom matrices:

Theorem 1.17 (Informal; see Theorem 10.5 and Theorem 10.6). Suppose that A € R™"
has columns of £,-norm at most 1. Define

AA) = ||A®21'I||2 = sup |A®%0||,,

lollz=1
i=1 Z)iZO

where A®? := (Afj)i,je[n] and I1 is the projection orthogonal to (1,...,1).
Then, A has a coloring of discrepancy O(1/A(A) - log n) that can be found efficiently.

To compare this result with prior work, consider the special case where A is a rotation
matrix. This case remains open and we believe it is a key instance of Komlos conjecture.
In this setting, the top eigenvector of A®? is the all-ones vector with eigenvalue 1, so that
A(A) coincides with the second eigenvalue of this entrywise squared matrix.

After applying a rotation to the hypercube {—1,1}", every corner lies at #,-distance
y/n from the origin. Komlds conjecture asserts that there always exists a corner whose
f--distance to the origin is O(1). Theorem 1.17 establishes this conclusion under the
assumption that the second largest eigenvalue of A®% is O(1/logn). We show in §10.3 that
this quantity is O(1/+/n) for some models of random orthogonal matrices. Moreover, it
is always at most 1 when A is a rotation matrix, so our bound subsumes the best-known
general result for arbitrary instances to Komlos conjecture: Banaszczyk’s discrepancy

bound of O(4/log n) [Ban98, BDG19].'

1.4. Roadmap
Part I: The Fourier Diagram Basis

Chapter 2. We introduce the Fourier diagram basis, illustrate it with examples, and
analyze how algorithmic operations act on the full Fourier representation. We motivate
the term Fourier, and conclude by contrasting this basis with the monomial basis used in
prior work.

Chapter 3. We state and prove our main theorem characterizing the joint distribution of
Fourier diagrams. We then derive the effect of algorithmic operations on the asymptotic
Fourier tree basis. Finally, we establish a general state evolution result applicable to
nonlinear iterative algorithms.

Shortly before the publication of this thesis, this bound was improved to O(log"/* n) [BJ25].
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Chapter 4. We connect our approach with the cavity method from statistical physics.
We provide background on the cavity method and derive several of its key algorithmic
predictions rigorously by working in the space of tree diagrams.

Chapter 5. We study generalizations where the number of iterations grows with the
input dimension. We discuss obstacles to extending our framework, and prove that the
tree approximation remains valid for approximating the top eigenvector.

Part Il: Polynomial Optimization

Chapter 6. We show how the theory from Part I applies to random quadratic polynomial
optimization. We give a tight analysis of power iteration, its shifted variant, and the optimal
low-degree polynomial for approximating the top eigenvector. We revisit and reinterpret
Montanari’s algorithm for hypercube optimization. Finally, we study the analogous problem
for worst-case polynomials.

Chapter 7. We prove our main theorem bounding the second eigenvalue of sparse
random tensors in the sense of Friedman and Wigderson. We present two multiscale union
bound approaches that significantly improve over the naive approach.

Chapter 8. We present new rounding algorithms for higher-degree polynomial opti-
mization and prove our main theorems on certifiable approximation guarantees for cubic
optimization over both the sphere and the hypercube. We discuss extensions to higher
degrees and establish our approximation result for MAX-3-SAT.

Part lll: Discrepancy Theory

Chapter 9. We present our new framework for discrepancy minimization based on
regularization. We provide several interpretations of our method: as a continuous-time
process, as a barrier argument, and as an online optimization game. We give a complete
proof of Spencer’s theorem using this framework. Finally, we extend our framework to
matrix discrepancy.

Chapter 10. We state and prove our main results for pseudorandom instances of the
Komloés and Beck-Fiala conjectures. We also explore connections between our framework
and alternative arguments based on duality and compression.

Chapter 11. We show that Spencer’s theorem holds with an improved constant. We
discuss potential directions to further tighten this constant, including links to the optimal
regret bound in learning with expert advice. We also argue that our framework cannot
improve the constant for spectral sparsification.

34



1.5. Bibliographic notes

1.5. Bibliographic notes

Part I is based on joint work with Chris Jones. A preliminary version of these results
appeared in the proceedings of ICALP 2025 [JP25]. Chapter 8 is joint work with Tim
Hsieh, Pravesh Kothari, and Luca Trevisan, and appeared in the proceedings of SODA
2024 [HKPT24].

Chapter 9, Chapter 10, and §11.1 are based on joint work with Adrian Vladu. With
the exception of the extension to the matrix case in §9.5, these results appeared in the
proceedings of SODA 2023 [PV23].

The remaining chapters, namely Chapter 6, Chapter 7, and Chapter 11, are original and
unpublished contributions by the author. The author thanks Tim Hsieh for collaboration on
the open problem mentioned in §6.4; Chris Jones and Tim Kunisky for discussions related
to Theorem 6.9; and Luca Trevisan for his guidance, which led to the results in Chapter 7.

35






Notation

If n > 0 is an integer, we define [n] := {1,...,n}. If n,k > 0 are integers, then ([Z])

denotes the set of subsets of [n] of size k.

Vectors and matrices

We use boldface to denote vectors and matrices. 0 is the all-zeros vector, and 1 is the
all-ones vector. The tuple (e, ..., e,) is the standard basis of R", where ¢;; = 1if i = j and
e;j = 0 otherwise.

If x,y € R", then x © y denotes the componentwise product: (x © y); := x; - y; for all
i € [n]. For any integer k > 1, we define x®f := x © - - - © x (k terms).

Let A € R For i € [d], we denote by A, the i-th row, and for j € [n], we denote by
A/ the j-th column of A.

If x,y € R", define (x,y) = }_, x;y;. f A,B € R define (A, B) := Z?:l ;’:1 A;jBi;.

If x € R"and p € (0,00), define ||x||, := (Xn, |xl~|p)1/p. We also define ||x||, =
maxie(s] [xi| and [l = I{i € [n] : x; # O}].

We denote by §""! := {x € R" : ||x||, = 1} the unit &-sphere, and by A, := {x € RZ, :

1 x; = 1} the unit simplex.

If A € R™" then ||A], = max|x|,=|lyll,=1 (X, Ay) is the spectral norm, and [|Alr :=
(A, A)l/ ? is the Frobenius norm.

If A € R™", wedefine tr A := )}, A;; to be the (unnormalized) trace of A. For symmetric
matrices A, B € R™", we write A > 0 if A if positive semidefinite (i.e., all eigenvalues of A
are non-negative),and A < Bif B— A > 0.

We denote by &, the symmetric group on n elements. If 0 € S, and u € R", then
o(u); = ug(;). If A € R™", then 0(A);j := As(i)0(j)-

Tensors

For an integer t > 1, we say T is a t-uniform tensor over R” when T = (T;);c[,:. The
tensor T is symmetric if T; = T(;) for all o € &;.
If i € [n], the i-th slice of T is T; € R® ', defined by (T;)j =T forall j € [n]*".
Given uy, ..., u; € R", their tensor productisu; ® --- @ u; € R™ defined by
t

(we--ou)=||u) forieln]"

j=1
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Probability theory

All asymptotics are with respect to n — oo unless otherwise stated.

Let (X,,)nen and Z be random vectors. We write X, 2N ZifX n converges almost surely
to Z, i.e., lim,_,o X, = Z with probability one.

We write X, 4 zitx n converges in distribution to Z, meaning that for every bounded
continuous function f, we have E f(X,,) — E f(Z).

We say that a sequence of events indexed by n holds with high probability if their
probability tends to 1 as n — oo.

We will refer to the generalized (probabilist’s) Hermite polynomials as h( - ; 0%), where
hy is the degree-k monic orthogonal polynomial for N(0, 0%). If Z; is an independent
N(0, 6?) random variable for all i € J, then ([T;cq hx,(Zi; 7)) e 18 an orthogonal basis
for polynomials in (Z;);c7 with respect to the expectation over (Z;);es.

Asymptotics

We use standard asymptotic notations O, Q, o, w, and O, as well as their equivalent
forms <, >, <, >, and =<. Unless otherwise specified, all parameters in such notations are

~y A~

universal constants.
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CHAPTER 2.

The Fourier Diagram Basis of Wigner

Matrices

This chapter introduces the Fourier diagram basis, an orthogonal basis of permutation-

symmetric polynomials in the entries of a random matrix. We keep in this chapter a

random matrix theory perspective. In later chapters, this technology will be instrumental

to understand the dynamics of non-linear iterative algorithms generalizing the matrix
power method, for solving problems such as random quadratic polynomial optimization.

While the Fourier diagram basis can be defined in different settings, we focus in this

chapter on the simple case of Wigner matrices, i.e., random symmetric matrices with

independent entries above the diagonal. The specific distribution of the entries is not

important; in particular, we will obtain several universality results that hold across a wide

class of models.

Table of contents

2.1.

2.2.
2.3.

2.4.
2.5.
2.6.

Introduction . . . . . ... L 42
2.1.1.  An example of Fourier diagram computation. . . . . . ... .. .. 43
Definition of the Fourier diagram basis . . . . .. ... ... ... ... .. 44
The Fourier analysis viewpoint . . . . . .. ... ... ... .. ....... 45
23.1. ConsSequUences . . . . . .« v v it e e e e e e e e 47
Operations on the diagram representation . . . ... ... ... ...... 48
Repeated-label diagram basis . . . . . . ... ... ... ... oL 49
Summary . . . ... 51

This chapter is based on [JP25].

41



Chapter 2. The Fourier Diagram Basis of Wigner Matrices

2.1. Introduction

Throughout Part I, we will work with the following Wigner random matrix model.

Assumption 2.1 (Wigner model). Let y and pg be two subgaussian' distributions on R
such that Ex.,[X] = 0 and Ex.,[X?] = 1.

Let A be arandom n X n symmetric matrix with independent entries (up to the symmetry)
which are either vnA;; ~ yio on the diagonal or y/nA;; ~ p off the diagonal.

We next define the model of iterative algorithm used throughout Part I. We adopt the
framework of generalized first-order methods, introduced by Celentano, Montanari, and
Wu [CMW20].

Definition 2.2 (General first-order method). The input is a matrix A € R™". The state of
the algorithm at time ¢ is a vector x; € R". Initially, xy = 1. At each time ¢, we can execute
one of the following two operations:

1. Multiply by A, i.e.,
X1 = Axy.

2. Apply coordinatewise a polynomial® function independent of n, f;: R™*! — R to
(x4, x4-1,...,%0), 1.e, forall i € [n],

xt+l,i = ﬁ(xt,ia e xO,i) .

This definition captures a wide class of iterative algorithms, including power iteration
and the best-known algorithm for optimizing a random degree-2 polynomial over the
hypercube by Montanari [Mon19]. We will focus mostly on the case where A is sampled
from a null model, without any planted signal. However, similar iterative methods are also
ubiquitous in statistical estimation, as the following example demonstrates.

Example 2.3 (Spiked Wigner model). Let W be a matrix satisfying Assumption 2.1, x* € R"
be a signal vector, and A > 0 be a fixed parameter (the signal-to-noise ratio). We observe

A
A== -x"(x"T+W.
n

In the Bayesian setting, we further assume that x* is drawn from some product prior:
~" Py, ie€][n],

for some fixed prior distribution Py on R. The goal is to recover x* by observing only A.

L A distribution p on R is subgaussian if there exists a constant C > 0 such that for all ¢ € N, Exu[1X]9] <
C1q92,
2 Restriction to polynomial functions is a technical assumption which is not present in the original definition.
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The quality of a solution x output by an algorithm is typically measured by the overlap
(x,x*). When P, is given a priori, the algorithm achieving the best-known overlap is an
iterative algorithm in the sense of Definition 2.2 [RF12]. For example, when Py = N (0, 1),
there is no structure in the planted vector to leverage, so that algorithm is simply the
power method (x;4+; = Ax;). When P, is the uniform distribution on {-1,1} (the Z,-
synchronization problem), that algorithm uses non-linearities based on tanh: R — [-1,1]
to map the coordinates of the iterates to [-1, 1].

2.1.1. An example of Fourier diagram computation

We introduce the Fourier diagram basis through an example: computing the vector A(A1)®?,
which is the iterate of a simple nonlinear iterative algorithm. In general, calculation
with diagrams is a bit like a symbolic version of the trace method from random matrix
theory [Bor19].

For simplicity, we assume in this section that A satisfies Assumption 2.1 with A;; = 0 for
alli € [n].

We will use rooted multigraphs to represent vectors.” Multigraphs may include mul-
tiedges and self-loops. In our figures, the root will be drawn as a circled vertex ©. The
vector 1 will correspond to the singleton graph with one vertex (the root): ©. Edges will
correspond to A; j terms.

The vector A1 will be represented by the graph consisting of a single edge, with one of
the endpoints being the root:

(A1); = Zn:Aij = Z Aij
=)

Jj=1
i,j distinct

©—o0

where the second equality uses the assumption that A has zero diagonal. Now to apply the

square function componentwise, we can decompose:

n n

2 2
(AP = > AjAx+ ). Al
i,j,k distinct i,j distinct

R

-0 +%@

3 Graphs with multiple roots can be used to represent matrices and tensors, although we will not need those

here.
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Moving on, we apply A to this representation by casing on whether the new index i
matches one of the previous indices. We group terms together using the symmetry of A
and the fact that A;; = 0.

n n

(A(Al)z)l = Z AijAjkAjf + 2 Z AlZJAJk
Jik =1 Jik=1
i,j,k,¢ distinct i,j,k distinct
n n
o AgAL + > A
J* 7 jk 1j
jik=1 Jj=1
i,j,k distinct i,j distinct

0O

= @—Q<O +2(OF——=0——0
+ (O—0——0+ @\Q/O

This is the non-asymptotic Fourier diagram representation of A(A1)2.

We will see in Chapter 3 that in the limit n — oo, only some of these terms contribute
to the asymptotic Fourier diagram basis representation. Asymptotically, hanging double
edges can be removed from a diagram®, so that the third diagram in the representation
above satisfies, as n — oo,

©—o——=0 = (O—-o.

The second and fourth diagrams in the representation of A(A1)? have entries on the
scale O(n~1/?) and so they will be dropped from the asymptotic diagram representation. In

total,
A(A1)? 2 @_Q<Z + @ o.

We will show that as n — oo, the left diagram becomes a Gaussian vector with independent
entries of variance 2, and the right diagram becomes a Gaussian vector with independent
entries of variance 1. In fact, these 2n entries are asymptotically jointly independent. It can
be verified numerically that approximately for large n, A(A1)? matches the sum of these
two random vectors, the histogram of each vector’s entries is Gaussian, and the vectors are
approximately orthogonal.

2.2. Definition of the Fourier diagram basis

Definition 2.4. A Fourier diagram is an unlabeled undirected multigraph « = (V (), E(«))
with a special vertex labeled ©) which we call the root. No vertices may be isolated except
for the root. We let A be the set of all Fourier diagrams.

4To be convinced of this, the reader can think of the case where the entries of A are uniform +

L
TR
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2.3. The Fourier analysis viewpoint

Definition 2.5. For a Fourier diagram « € A with root ©), define the vector Z, € R" by

Zyi= Z ]—[ Apwow), forallie [n],

¢: V(a)—[n] {u,v}eE(a)
»(©)=i

where ¢: V(a) < [n] means that we sum over all injective maps from V(«) to [n].

Among all Fourier diagrams, the ones corresponding to trees play a special role. They
will constitute the asymptotic Fourier diagram basis.

Definition 2.6 (5 and 7). Let S be the set of unlabeled rooted trees such that the root has
exactly one subtree (i.e. the root has degree 1). Let T be the set of all unlabeled rooted trees
(non-empty, but allowing the singleton).

Definition 2.7 (Proper Fourier diagram). A proper Fourier diagram is a Fourier diagram
with no multiedges or self-loops (i.e. a rooted simple graph).

For proper Fourier diagrams a € A, the following properties of Z, hold in a non-
asymptotic sense, i.e., for arbitrary n:
1. Z, is a multilinear polynomial in the entries of A with degree |E(«)| (or Z, = 0 when
V()] > n).
2. Z, has the symmetry that Z, ;(A) = Z »(;)(7(A)) for all permutations 7 € S,, where
7 acts on A by permuting the rows and columns simultaneously.

3. For each i € [n], the set {Z,; : proper Fourier diagram a € A} is orthogonal with
respect to the expectation over A.

4. In fact, Z, is a symmetrized multilinear Fourier character (see §2.3). This implies the
previous properties and it shows that the proper diagrams are an orthogonal basis
for a class of symmetric functions of A.

We may represent the algorithmic state x; of a GFOM in the diagram basis,

X; = anZa.

acA

To multiply together or apply algorithmic operations on a diagram expression, we case on
which indices repeat, like in the example in §2.1. See Lemmas 2.11 and 2.14 for a formal
derivation of these rules.

2.3. The Fourier analysis viewpoint

The Fourier diagrams form an orthogonal basis that can be derived in a mechanical way
using symmetrization.
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We can use Fourier analysis to express a function or algorithm with respect to a natural
basis. The unsymmetrized underlying analytical space consists of functions of the n* entries
of A. Since the entries of A are independent, the associated Fourier basis is the product basis
for the different entries. When A € {—1, 1}"*" is a Rademacher random matrix, the Fourier
characters are the multilinear monomials in A. An arbitrary function f : {-1, 1} - R

f(A): Z CanAij,

ac[n]x[n]  (ij)ea

is then expressed as

where c,, are the Fourier coefficients of f. When A is a symmetric matrix with zero diagonal,
we only need Fourier characters for the top half of A, and the basis simplifies to o C ([Z]).
That is, the possible a can be interpreted combinatorially as graphs on the vertex set [n].

An observation that allows us to significantly simplify the representation is that many of
the Fourier coefficients are equal for S,-equivariant algorithms. A function f: R™" — R
is S,-equivariant if it satisfies f(x(A)) = f(A) or if f: R™" — R" satisfies f(n(A)) =
7(f(A)) where 7 acts on A by permuting the rows and columns simultaneously. For
scalar-valued functions, considering the action of S, on the vertex set of the Fourier
characters [n], any two Fourier characters @, f which are in the same orbit will have the
same Fourier coefficient. Equivalently, if @ and f are isomorphic as graphs, then their
Fourier coeflicients are the same. By grouping together all isomorphic Fourier characters,
we obtain the symmetry-reduced representation defining the Fourier diagram basis,

f(A) = Z Ca Z 1_[ Ap(u)p(o)

nonisomorphic ag([g]) ¢: V(a)—=[n] {uv}ea

Thus by construction, the diagrams are an orthogonal basis for symmetric low-degree
polynomials of A.

The above discussion was for Boolean matrices with A;; ~ {+1}. The natural generaliza-
tion expresses polynomials in the basis of orthogonal polynomials for the entries A;; (e.g.
the Hermite polynomials when the A;; ~ N(0,1/n) [MW25, §3.2]).

Our results show that for the first-order algorithms we consider, only the multilinear
part of the basis matters (i.e. the orthogonal polynomials which are degree 0 or 1 in each
variable): up to negligible error, we can approximate A?j ~ L and Afj ~ 0 for k > 3. We
use the monomial basis® to represent higher-degree polynomials instead of higher-degree
orthogonal polynomials in order to simplify the presentation (except for the degree-2
orthogonal polynomial A?j — % which expresses some error terms).

> The monomial “basis” is a misnomer in the cases when A;; satisfies a polynomial identity such as A?j = %
In these cases, representation as a sum of diagrams is not unique. Our expressions should be interpreted as
giving explicit sums of diagrams.
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2.3.1. Consequences

In Definition 2.5, for a proper « € A (a graph instead of a multigraph), Z, has entries which
are homogeneous multilinear polynomials in the entries of the matrix A. The next lemma
shows that the proper diagrams with size at most n form an orthogonal basis of symmetric
polynomials in A with respect to the expectation over A.

Lemma 2.8. Foralli, j € [n] and distinct proper diagrams a, p € A, E [Za,,-Zlg’j] = 0.

Proof. For each distinct S, T C ([g]), the independence and centeredness of the off-diagonal
entries of A proves that

Bl [ ] Ay [] A|=0.
{i,j}eS {k,t}eT
Two distinct diagrams sum over distinct sets of multilinear monomials, so this orthogonality

extends to diagrams. []

The diagrams are not normalized for that inner product, but their variance can be
estimated as follows:

Lemma 2.9. Foralli € [n] and proper a € A\ {©} we have E [Za,i] =0 and

(n=1)(n=2)-(n=|V(a)|+1)
nlE(@)]
= lAut(a)] - " OTTE@I (14 0(1)),

E[ZZ;]] = |Aut(a)|-

where the last estimate holds when |V (a)| = o(+/n).

Proof. When « is proper, Z,; is a multilinear polynomial with zero constant coeflicient,
and so it has expectation 0. For the second moment, we have

E[z2]= ) > Bl ] AvweoAnweo

o1: V()= [n] g2: V() —[n] | {wo}eE(a)
¢1(©)=i 92(©)=i
Since E [A jk] = 0 for j # k, the only terms with nonzero expectation have each A
occurring at least twice. As ¢, are @, are injective, each Aj; can only occur at most
twice. Therefore, if we fix ¢; the embeddings ¢, that contribute a nonzero value are
exactly graph isomorphisms onto img(¢;). The total number of choices for ¢; and ¢, is
(n=1)---(n—|V(a)| +1) - |Aut(a)| and the expectation of a nonzero term is

1
2 _
ﬂ E[Afk]_nw(an'

{j:k}eE(a)
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This completes the proof of the first part of the statement. Under the further assumption
|V (a)| = 0(+/n), the falling factorial can then be estimated as

V(a)|-1 .
(n=1)...(n=|V(a)| +1) i
log( V@I < 2 log |1 - -
V@)1
< - —> 0.
- e
This implies that (n — 1) ... (n = |V(a)| + 1) = (1 + 0(1))nV @I~ as desired. o

We can already see from the previous lemma that if @ € T is a tree, then the variance of
Z4i 1s ©(1), whereas if « is a connected graph with a cycle, then the variance of Z,; is 0(1).

We will use orthogonality repeatedly in the sequel through the following direct conse-
quence of Lemma 2.8 and Lemma 2.9:

Corollary 2.10. Let x = Xproper aed CaZa- Then for any r € 7T,

E [xiZT,,-] =c E [Zfi] = ¢;|Aut(r)| +0(1),
’ n—oo

where the second estimate holds for |V (7)| = o(+/n).
In particular, E [x] = cg1 where cg, is the coefficient of the singleton diagram.

2.4. Operations on the diagram representation

We compute the diagrammatic effect of multiplying by A in the Fourier diagram basis. For
any diagram a € A, we use the notation a* to denote the diagram obtained from « by
extending the root by one edge.

Lemma 2.11. For all diagrams o € A,

AZa = Za+ + Z Zcontractv and © in a* -
veV(a)

Proof.

(AZa)izzn:Aij D [T Avwew

j=1 ¢: V(a)—[n] {u,v}cE(a)
p(©)=j

= Z Aig(©) 1_[ Apup(o) -

¢: V(a)—[n] {wo}€E(a)
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The sum over ¢ can be partitioned based on whether i € img(¢). The terms with i ¢ img(¢)
sum to Z,+. The terms with i € img(¢) sum to the different contractions of a* based on
which vertex of « is labeled i. ]

Switching to componentwise operations, the combinatorics is captured by the concepts
of intersection patterns and intersection diagrams.

Definition 2.12 (Intersection pattern, P € P(ay, ..., ax)). Let ay, ..., ar € A. Let a be the
diagram obtained by putting all ¢; at the same root. An intersection pattern P is a partition
of V() \ {©} such that for all i € [k] and o,w € V(;) \ {©}, v and w are not in the same
block of the partition.

Let P(ay, ..., ax) be the set of intersection patterns between ay, . . ., a.

Definition 2.13 (Intersection diagram, ap). Let @ € A. Given a partition P of V(«), let ap
be the diagram obtained by contracting each block of P into a single vertex. Keep all edges
(hence there may be new multiedges or self-loops).

By casing on which vertices are equal among the embeddings of a;, ..., a as in the
proof of Lemma 2.11, we have:

Lemma 2.14. Foray,...,ax € A, the componentwise product of Z,,, ..., Z,, is
24,0 0Zy= Y Za.
PeP(ay,....ax)

2.5. Repeated-label diagram basis

An alternative basis for the diagram space consists of diagrams in which labels are allowed
to repeat. This representation has been defined by Ivkov and Schramm [1S24, §3.5]. We will
not use this basis in this work, for reasons that will become apparent in the next chapter.
One key observation at this point is that this alternate basis is not orthogonal.

Definition 2.15 (Z,,). For a diagram « with root ©), define Z, €R" by

Zgi = Z rl Apwp() -

@:V(a)—[n] {uv}€E(a)
»(©)=i

The only difference between Z, and Z, is that the embedding ¢ must be injective in Z,,.

To perform the change of basis in one direction is as easy as replacing Z, by a sum of Z,,
based on which labels are repeated.
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Chapter 2. The Fourier Diagram Basis of Wigner Matrices

Lemma 2.16. Fora € A,
Zo= ), Za
PeP(a)
where P(a) is the set of partitions of V(a) and ap contracts the blocks of P (definition 2.13).

Proof. We have

Za= ), ] Avwew-
0V (@)= n] {uo}eE(@)

¢(©)=i
The sum over ¢ can be divided based on which vertices are assigned the same label. The
terms with a given partition P of V() are exactly Zy,, ;. []

The algorithmic operations are simpler to compute in this basis, although the asymptotic
tree approximation does not seem to be easily visible in this basis (the tree diagrams do
not span the same space, and a diagram which is an even cycle has entries with magnitude
©(1) in Z, but negligible entries in Z,).

Given the current representation x; = ), oy ¢.Z, the operations have the following
effects on the Z, (non-asymptotically i.e. without taking the limit n — o).

1. Multiplying by A extends the root.

We have AZ,, = Z,+ where a* is obtained by extending the root by one edge.

2. Componentwise products graft trees together.

To componentwise multiply Zyand Z 5, we “graft” & and by merging their roots.

Example 2.17. Consider the example,
xts1 = (Ax)®? xo=1

where 1 € R" is the all-ones vector and the square function is applied componentwise. The
first few iterations are,

x0=1 x1 = (A1)? x5 = (A(A1)®?)®?
n n n n
xoi =1 | X1 = Z AijAij, | X211 = Z Z Z Aij Aip Ak Ajin Aok, Aoty
J1.j2=1 J1:J2=1 ky,ko=1 61,£2=1

©| o °

The Fourier diagram basis and the repeated-label diagram basis may appear similar at

this point. The key difference is that the first one has nicer properties in the limit n — oo,
as we will see in the next chapter.
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2.6. Summary

2.6. Summary

We introduced our diagrammatic framework to represent the iterates of algorithms applied
to a Wigner matrix. Each vector iterate is an &,-symmetric polynomial in the matrix
entries and can be expanded in the Fourier diagram basis. Unlike the classical repeated-label
diagram basis, the Fourier basis is orthogonal, which will be key for the asymptotic results
developed in the next chapter.
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CHAPTER 3.

The Asymptotic Tree Approximation

Building on Chapter 2, this chapter studies the behavior of the Fourier diagram basis

in the high-dimensional limit n — co. We begin by proving that the scaling of a diagram

is determined by its number of excess edges, and that tree diagrams are precisely the

dominant contributions. This is the essence of the asymptotic tree approximation. Next, we

show that a subset of these trees forms a basis of asymptotically independent Gaussian

variables, while the remaining diagrams are asymptotically Hermite polynomials in them.

In particular, the joint distribution of a set of Fourier diagrams can be directly understood

from their graph-theoretic properties. Finally, we apply these results to explicitly describe

the asymptotic behavior of non-linear iterative algorithms.

Table of contents

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

Asymptotic properties of the Fourier diagram basis . . . . ... ... ... 54
The idealized Gaussian dynamic . . . . . .. ... .. ... ... ...... 55
Equality up to combinatorially negligible diagrams . . . . . ... ... .. 57
Classification of constant-size diagrams . . . . . . . . ... ... ...... 58
Tree approximation of GFOMs . . . . . . ... ... ... .. ... ..... 61
General state evolution . . . . . ... ... ..o oo L 62
Summary . . . ... 64

This chapter is based on [JP25].

53



Chapter 3. The Asymptotic Tree Approximation

3.1. Asymptotic properties of the Fourier diagram basis

We still assume that A satisfies Assumption 2.1. Recall the set of tree diagrams T defined
in §2.2. The constant-size tree diagrams (Z;),c7 exhibit the following key properties in the
limit n — oo and with respect to the randomness of A.

1. The coordinates of Z, € R" for any 7 € 7 are asymptotically independent and
identically distributed.

2. The random variables Z, ; for o € & (the tree diagrams with one subtree) are asymp-
totically independent Gaussians with variance |Aut(c)|, where Aut(o) are the graph
automorphisms of o which fix the root.

3. The random variable Z;; for 7 € T (the tree diagrams with multiple subtrees) is
asymptotically equal to the multivariate Hermite polynomial

[ [, (Zo s 12ut(o)))

o€8

where d,; is the number of children of the root whose subtree (including the root)
equals o € 8.
The remaining Fourier diagrams not in J can be understood using the further asymptotic
properties:

(iv) For any diagram « € A, if a has a hanging double edge i.e. a double edge with one
non-root endpoint of degree exactly 2, letting «j be the diagram with the hanging
double edge and hanging vertex removed, then Z, is asymptotically equal to Z,,. For
example, the following diagrams are asymptotically equal:

®: @ =
n n
~ 2 ~ 2 A2 A2 42
1 = ZAU x Z Al AT A A
j=1 jktm=1
I#] i,j,k,,m distinct

(v) For any connected a € A, if removing the hanging trees of double edges from «
creates a diagram in 7, then by the previous property, Z, is asymptotically equal to
that diagram. If the result is not in 7, then Z,, is asymptotically negligible.

(vi) The disconnected diagrams have only a minor and negligible role in the algorithms
that we consider. See §3.4 for the description of these random variables.

To summarize the properties, given a sum x of connected diagrams, by removing the

hanging double trees, and then removing all diagrams not in 7, the expression admits an
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3.2. The idealized Gaussian dynamic

asymptotic Fourier diagram basis representation of the form

X 2 ZCTZT, (3.1)

reT

for some coefficients c¢; € R independent of n and A. We call this the tree approximation to
x. Note that all tree diagrams have order 1 variance regardless of their size, which can be
counter-intuitive.

3.2. The idealized Gaussian dynamic

The main appeal of the tree approximation in (3.1) is that when restricted to the tree-shaped
diagrams, the GFOM operations have a very simple interpretation: they implement an
idealized Gaussian dynamics which we describe now.

The idealized GFOM moves through an “asymptotic Gaussian probability space” which is
naturally the one corresponding to the n — oo limit of the diagrams. Based on the diagram
classification, this consists of an infinite family of independent Gaussian vectors (Z;)ses -
However, due to symmetry, all of the coordinates follow the same dynamic, so we can
compress the representation of the dynamic down to a one-dimensional random variable
X; which is the asymptotic distribution of each coordinate x;; . We call X; the asymptotic
state of x;.

For example, Approximate Message Passing (AMP) is a special type of GFOM whose
iterates are asymptotically Gaussian i.e. X; is a Gaussian random variable for all ¢ (in general
GFOM:s, although X; is defined in terms of Gaussians, it is not necessarily Gaussian).

The algorithmic operations restricted to the trees and the corresponding evolution of
the asymptotic state X; are as follows. Two important operations on a tree-shaped diagram
are extending/contracting the root by one edge.

Definition 3.1 (+ and — operators). We define +:J — Sand —: 8§ — T by:

« If 7 € T, let r* be the diagram obtained by extending the root by one edge (i.e. adding
one new vertex and one edge connecting it to the root of 7, and re-rooting r* at this
new vertex).

« If 7 € &, let 7~ be the diagram obtained by contracting the root by one edge (i.e.
removing the root vertex and the unique edge from it, and re-rooting 7~ at the
endpoint of that edge).

Recall that the possible operations of a GFOM are either multiplying the state by A or
applying a function componentwise. The effect of these two operations on the tree-shaped
diagrams are:
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Chapter 3. The Asymptotic Tree Approximation

« If 0 € §, then AZ, is asymptotically the sum of the diagrams ¢ and o~ obtained by
respectively extending and contracting the root by one edge. For example,

(o¢]

Ax@—of\ :@—O—& @(\j

Ifr €T\ S, then AZ, is asymptotically only the 7" term. For example,

OO /O
A X = -
@K ©—o—__
 From the classification of diagrams, if 7 € T consists of d, copies of ¢ € &, then
[ |74, (Zo: 10t (o)) = 2. (3.2)

o€S

Therefore, to compute f(Z, : 0 € 8), we expand f in the Hermite polynomial basis
associated to &, and apply the rule (3.2) to all the terms. For example,

These operations correspond to the following Gaussian dynamic.

Definition 3.2 (Asymptotic Gaussian space, Q). Let (Z.°),es be a set of independent
centered (one-dimensional) Gaussian random variables with variances Var(Z;") = |Aut(o)|.

If 7 € T can be decomposed as d, copies of each o € § branching from the root, we

define
= | [ ha, (253 140t (o).

oe8
We call asymptotic states the elements in the linear span of (Z°);c7. We can view them
both as polynomials in the formal variables (Z_"),cs and as real-valued random variables.
The set of asymptotic states is denoted Q.

Definition 3.3 (Asymptotic state). If x € R” is such that x = Y,y ¢;Z,, we define the
asymptotic state of x by
X = Z c:Z .

€T
The state evolution of the algorithm can now be described concisely as:

« If x; has asymptotic state X;, then the asymptotic state of Ax; is X;" + X, . Here we
extend the + and — operators linearly to sums of Z; or Z° (let Z7 = (Z°)” = 0 if
7€ T\S).

o If x4_4,...,x0 have asymptotic states X;_1,...,Xp and f is any polynomial, then the
asymptotic state of f(x;_1,...,x0) is f(Xi—1,...,X0).
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3.3. Equality up to combinatorially negligible diagrams

3.3. Equality up to combinatorially negligible diagrams

The idea behind = is to make a purely combinatorial definition so that we can use com-
binatorial arguments on the diagrams. First, we have the following key moment bound
which estimates the magnitude in n of a diagram Z, based on combinatorial properties of
a.

Definition 3.4 (I(«)). For a diagram « € A, let I(a) be the subset of non-root vertices
such that every edge incident to that vertex has multiplicity > 2 or is a self-loop.

Lemma 3.5. Letq € N be a constant independent of n and a € A be a constant-size diagram.
Then fori € [n],
)E [Zq ” <O (n%<|V(a)|—1—|E(a)|+|I(a>|>) _
a,i

A similar norm bound for matrices is a crucial ingredient in Fourier analysis of matrix-
valued functions [AMP20]. The proof of Lemma 3.5 is in Appendix A.2.2.

Based on this computation, we define a combinatorially negligible diagram to be one
whose moments decay with n. Since we will be working with diagram expressions that are
linear combinations of different diagrams, the following definition also handles diagrams
rescaled by some coefficient depending on n.

Definition 3.6 (Combinatorially negligible and order 1). Let (ay),en be a sequence of
real-valued coefficients such that a, = ©(n™) for some k > 0 with 2k € Z. Let « € A be a
constant-size diagram.

1. We say that a,Z, is combinatorially negligible if
V()| -1 - |E(a)| + |I(a)] <2k —1.

For a, = 0, we also say that a,Z, is combinatorially negligible.

2. We say that a,Z, has combinatorial order 1 if
V()| - 1= |E(a)| + [[(e)| = 2k .
We will only consider settings where the coefficients are small enough so that all diagram
expressions have combinatorial order at most 1 (that is, negligible or order 1).

Definition 3.7 (2). We say that x = y if there exists real coefficients (c,)yc4 depending
on n and supported on diagrams of constant size such that

x—y:anZa,

acA

where c,Z, is combinatorially negligible for all a € A.
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Chapter 3. The Asymptotic Tree Approximation

Later, we will prove results of the form x = X where x is the state of an algorithm and
X is some asymptotic approximation of x. In order to interpret these results, we note that
= implies very strong forms of convergence of the error to 0. The proof of the following
lemma can be found in Appendix A.2.2.

Lemma 3.8. Suppose that A = A(n) is a sequence of random matrices satisfying Assump-
tion 2.1. If x and y are diagram expressions such that x = y, then ||x — yl|co = O(n™"/?) with
high probability.

Next, we prove a very important property of =. The combinatorially negligible diagrams
remain combinatorially negligible after applying additional algorithmic operations.

Lemma 3.9. Ifx,y are diagram expressions with x = vy, then
Ax = Ay.
Moreover, if x1,...,x1, Y, ..., Yy, are diagram expressions with x; = y, foralli € [t], then

flenox) = flyn--yy),

for any polynomial function f: R" — R applied componentwise.

The proof of Lemma 3.9 is in Appendix A.2.2. The intuitive view of this lemma is that a
diagram with a cycle still has the cycle after the algorithmic operations and thus remains
negligible. The proof in Appendix A.2.2 is a syntactic version.

We can also show combinatorially that the error of removing a hanging double edge
from any diagram is negligible. The proof proceeds by extending the definition of diagrams
to allow new types of residual edges that are only used in the analysis (see Appendix A.2.1).

Lemma 3.10. Let a,Z, be a term of combinatorial order at most 1 such that « has a hanging
double edge. Let ay be a with the hanging double edge and hanging vertex removed. Then

(o0]
anZy = anZy, .

3.4. Classification of constant-size diagrams

We classify the asymptotic limits of constant-size diagrams and prove that all of their
constant-order joint moments are within O(n~1/2) of the asymptotic limit. In addition to the
vector Fourier diagrams from Definition 2.4, we will classify scalar Fourier diagrams, which
are simply unlabeled undirected multigraphs (the only difference with vector diagrams
being that they do not have a root). The notation for scalar diagrams is analogous.
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Definition 3.11 (Scalar Fourier diagrams). Let Acalar be the set of all unlabeled undirected
multigraphs with no isolated vertices. Let Tcalar be the set of non-empty unlabeled trees.

Given a scalar Fourier diagram a € Agc,lar, we define Z, € R by

Zo = Z 1_[ Ap(u)p(0)-

¢: V(a)—[n] {uo}eE(a)
We allow the empty scalar Fourier diagram which represents the constant 1.

Definition 3.12 (Fca1ar and F). Let Fyealar be the set of unlabeled forests with no isolated
vertices. Let J be the set of unlabeled forests such that one vertex is the special root
vertex (©. No vertices may be isolated except for the root.

The scalar diagrams are not normalized “correctly” by default. Z, for p € Fsca1ar has

c/2

order n®/“ where c is the number of connected components in p. The proper normalization

¢/2 to put all the diagrams on the same scale. The notion of = and combinatorial

divides by n
negligibility also extend in a natural way to scalar diagrams. See Appendix A.3 for these
definitions.

We classify the diagrams in A and Agcyjar. First, the next lemma identifies which of the
diagrams are non-negligible. This lemma is for connected vector diagrams; scalar diagrams

and disconnected vector diagrams have a similar characterization in Lemma A.17.

Lemma 3.13. Let @ € A be a connected Fourier diagram. Then Z, is either combinatorially
negligible or combinatorially order 1. Moreover, it is combinatorially order 1 if and only if the
following four conditions hold simultaneously:

1. Every multiedge has multiplicity 1 or 2.

2. There are no cycles.

3. The subgraph of multiplicity 1 edges is connected and contains the root if it is nonempty

(i.e. the multiplicity 2 edges consist of hanging trees).
4. There are no self-loops or 2-labeled edges (Appendix A.2.1).

Proof. By assumption, every vertex is connected to the root. With the exception of the
root, we can assign injectively one edge to every vertex in V \ I(«) and two edges to every
vertex in I(«) as follows. Run a breadth-first search from the root and assign to each vertex
the multiedge that was used to discover it. This encoding argument implies

(IV(e)] = [I(a)| = 1) +2|I(a)]| < [E(a)].

Hence Z, is combinatorially negligible or combinatorially order 1, and it is combinatorially
order 1 if and only if this inequality is an equality. This holds if and only if there are no
cycles, multiplicity > 2 edges, self-loops, or 2-labeled edges in @, and the edges incident to
V(@) \ I(«) in the direction of the root all have multiplicity 1. o
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As a result, the non-negligible connected diagrams in A are asymptotically equal to trees
in T after using Lemma 3.10 to remove the hanging double edges (disconnected diagrams
a € A and scalar diagrams a@ € Agc,lar are likewise asymptotically equal to a forest in I or
F, scalar)'

The next Theorem 3.14 completes the classification by showing that the non-negligible
diagrams in T, 3, and Fs,1ar are asymptotically Gaussians and Hermite polynomials. The
proof is in Appendix A.4. Also see Theorem A.23 for a version of the theorem in terms of
moments.

Theorem 3.14 (Classification). Suppose that A = A(n) is a sequence of random matrices
satisfying Assumption 2.1.
The non-negligible scalar diagrams can be classified as follows:
d
e If7T € Tocalar, then n™2Z, — N(0, |Aut(7)]).
o If p € Fgcalar has ¢ connected components, then

[] ha(nzslau@),

7:et-TscaIar

[(o¢]

_c
n 2Zp

where d; is the number of copies of T in p.

The non-negligible vector diagrams can be classified as follows:

d
« Ifo €8 andi € [n], then Z,; — N(0, |Aut(o)|).
e Ifr €T, thenZ; = [1,es ha, (Z4;|Aut(o)|) whered, is the number of isomorphic copies
of o starting from the root of 7, and the Hermite polynomial is applied componentwise.

« Ifa € 3 has c floating components (connected components which are not the component
of the root), letting o) be the component of the root (a vector diagram) and afq; be the
. . _< 00 _<
floating part (a scalar diagram), thenn™2Z, = n ZZaﬂoatZa@
Moreover, the random variables

{Zsi:0€8ie[n]}u {n‘%ZT ‘T € ‘Iscalar}
are asymptotically independent (Definition 3.15).

Finally, we formalize what we mean by asymptotic independence of vectors whose di-
mension can grow with n.

Definition 3.15 (Asymptotic independence). A family of real-valued random variables
(Xn,i)nenieq, is asymptotically independent if:

E

VqEN.EIE:e(q)rH—JOO.VkENJ”:Zki:q. <e(q).

i€l,

-[1=[x]

i€l,

[ ]x:

i€l,

Note that J, may be infinite.
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3.5. Tree approximation of GFOMs

Inductively following the rules given explicitly in §2.4, we may represent the algorithmic
state x; of a GFOM in the diagram basis. We define the tree approximation x; to be the
analogous diagram expression obtained by performing the algorithmic operations on only
the tree diagrams, removing hanging double edges and removing the cyclic diagrams that
appear.

Next, we derive how these operations behave explicitly. Suppose we start from 7 € T and
compute AZ,;. Which diagrams appearing in Lemma 2.11 are non-negligible? Following
the asymptotic classification of non-negligible diagrams (§3.4), it is only 7+ and 7~ (the
latter only appears if the root of 7 has degree 1, in which case 7~ is the result of intersecting
©) and the child of the root then removing a double edge). Hence we conclude

o | Z++Z,- fT7€S
AZ, =
Z .+ ifTE‘J'\S.

Given tree diagrams 7y, . . ., 7x € 7T, the asymptotically non-negligible terms in the product
in Lemma 2.14 are identified as follows. Let 7 be a non-negligible diagram appearing in the
result, i.e. 7 is a tree with hanging trees of double edges. Since 7y, . .., 7 are connected, the
hanging double trees must hang off the root vertex of 7 in order to avoid cycles. Additionally,
they must arise as the overlap of two complete copies of the tree. Thus the asymptotically
non-negligible terms are the partial matchings between isomorphic branches of the roots
of the 7;. Two copies of a branch o € § can be matched up into a tree of double edges in
|Aut(o)| ways.

Based on these observations, the tree approximation is formally defined to be the result
of applying the algorithmic operations and removing the non-trees at each step.

Definition 3.16 (Tree approximation of a GFOM, X;). Let x; € R" be the state of a
GFOM. We recursively define the tree approximation of x;, denoted by x;, to be a diagram
expression in the span of (Z;) 7.
1. Initially, Xy = Z.
2. If x;11 = Axy, define X471 = ()" + (%)~
3. If x441 = fi(x4, ..., x0) coordinatewise for some polynomial f; : R — R, define x;;
by applying each monomial of f; to X;, ..., X, separately and summing the results.
To apply a monomial on X, .. ., Xy, expand each X in the diagram basis and sum all
the cross product terms. The result of multiplying g tree diagrams 7y,...,7; € T is

Z MLy, s

MeM(ry,...,74)

where:
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a) M(zy, ..., 1y) is the set of (partial) matchings of isomorphic branches of 71, . . ., 74
such that no two branches from the same 7; are matched.

b) 7 is the tree obtained by merging the roots of 7y, . . ., 7, and removing all subtrees
matched in M.

C) M = H{O',U’}EM |Aut(0)|-

Theorem 3.17 (Tree approximation of GFOMs). Lett > 0 be a constant independent of n
and A = A(n) be a sequence of random matrices satisfying Assumption 2.1. Let x; € R" be
the state of a GFOM and let %, be its tree approximation. Then x; = %,. In particular,

lx; = %tleo = O(n™Y2) with high probability. (3.3)

Proof. We can prove x; = %, inductively. By Lemma 3.9, each of the combinatorially
negligible diagrams in x; remains combinatorially negligible at time ¢ + 1. Meanwhile,
the combinatorially non-negligible tree diagrams in x; get updated to x;+;. The error
bound (3.3) follows from Lemma 3.8. ]

Remark 3.18. The leading order guarantee of Theorem 3.17 is best possible in general
(up to logarithmic factors). Similar but more complicated equations can be given for the
lower-order error terms in (3.3). For example, since the other connected diagrams with E
edges and V vertices have magnitude n(V=1"E)/2_ the first lower-order term of order n~'/2
consists of connected diagrams with exactly one cycle. The GFOM operations on this set

of diagrams describe how the error evolves at this order.

Remark 3.19. One technical caveat of our analysis is that many nonlinearities used
in applications are not polynomial functions (e.g. ReLU, tanh). We note that existing
polynomial approximation arguments in the literature (see for example [MW25, 1S24])
should apply here to prove that the tree approximation holds for GFOMs with Lipschitz
denoisers f; up to arbitrarily small % |||, error. This is however strictly weaker than the
guarantees of Theorem 3.17.

3.6. General state evolution

From the ideas established so far, we directly deduce state evolution for GFOM algorithms,
capturing that the coordinates of x; are asymptotically independent trajectories of an
explicit random variable X;. Recall the definition of the asymptotic state X; from Defini-
tion 3.3.

Theorem 3.20 (General state evolution). Lett be a constant and A = A(n) be a sequence of
random matrices satisfying Assumption 2.1. Let x; € R" be the state of a GFOM and let X; be
the asymptotic state of x;. Then:
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1. 13" x; = E[X,] and therefore,

n Hi=1

1 v ~ 1
- > x; = B[X/] + O(n"?) with high probability
i=1

2. X; satisfies the explicit recurrence defined at the end of §3.2.

Proof. This will be proven in Appendix A.5 as the following lemma.

Lemma 3.21. Let x be a vector diagram expression with asymptotic state X € Q. Then as
scalar diagrams, ~ Y, x; = E[X].

For the second item, the tree approximation x; = X; holds by Theorem 3.17. The asymp-
totic state X; corresponding to X; then satisfies the explicit recursion on trees presented in

§3.2. ]

We conclude this section by working out a few lemmas which help compute asymptotic
states. We will use them in §4.4 to compute the state evolution of approximate message
passing.

The set of asymptotic states Q2 has an inner product coming from the expectation over
the Gaussians (Z;)es. Since these random variables are independent Gaussians, the
multivariate Hermite polynomials (Z;°),c7 form an orthogonal basis of Q with respect to
this inner product. Recall the + and — operators from Definition 3.1.

Fact 3.22. + and — are bijections between T and 8 which are inverses of each other and
preserve |Aut(7)].

A key observation is that X* is always a centered Gaussian random variable for any
X € Q, since every resulting tree is in S.

Fact 3.23. Forall X € Q, (X*)™ = X and (X™)" is the orthogonal projection of X to the
subspace spanned by 8.

We deduce that + and — are adjoint operators on Q:
Lemma 3.24. ForallX,Y € Q, E[XTY] =E[XY].
Proof. Since (Z°);e7 is a basis of the vector space Q, it suffices to check this for each pair

of basis elements 7, p € J. By orthogonality, E [Z;SZ;"] is nonzero if and only if 7+ = p

and in this case it takes value |Aut(z")|. By Fact 3.22, this occurs if and only if p € § and
T = p~. Moreover, in this case the value is also |Aut(z")| = |Aut(7)][, as needed. ]

Lemma 3.25. ForallX,Y € Q, E[XY] =E[X*'Y"] andE [(X‘)z] <E [XZ].
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Proof. For the first statement, apply Lemma 3.24 on X and Y™, then use Fact 3.23. For the
second statement, apply Lemma 3.24 on X~ and X to get E[(X")*X] =E [(X‘)z]. Since
(X7)* projects away some terms from X by Fact 3.23, the left-hand side is upper bounded
by E [X?]. O

3.7. Summary
This key chapter established the tree approximation of S,-symmetric polynomials in a
Wigner matrix. Every iteration can be mapped to its idealized version by removing all

its projections on cyclic diagrams. The idealized version follows a simplified Gaussian
dynamic, which we connect with a infamous statistical physics method in the next chapter.
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CHAPTER 4.

Rigorous Implementation of the Cavity
Method

This chapter connects the tree approximation framework developed in Chapter 3 with
the cavity method, a powerful but traditionally non-rigorous technique from statistical
physics. The cavity method is widely used to analyze message-passing algorithms, and to
predict quantities such as the free energy of statistical physics models.

We demonstrate that our tree approximation can be used to rigorously justify a central
application of the cavity method: the state evolution formula for approximate message-
passing (AMP) algorithms. Unlike previous rigorous approaches, which often depart
significantly from the original physical intuition, our proof closely mirrors the folklore
arguments from physics by justifying them line by line.
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Chapter 4. Rigorous Implementation of the Cavity Method

4.1. Background on the cavity method

Belief Propagation (BP) and Approximate Message Passing (AMP) are the main class of
nonlinear iterative algorithms that are studied using physical techniques. BP is a general
tool for statistical inference on graphical models which performs exact inference when the
underlying graph is a tree. The behavior of “loopy BP” on interaction graphs with cycles is
more subtle; the cavity method can be used to predict the asymptotic dynamics of loopy BP
on mean-field models (i.e. when the underlying graphical model is dense and random).

We first explain the idea behind the cavity method on the example of the replica-
symmetric belief propagation iteration for the Sherrington-Kirkpatrick (SK) model, which
is the original setting in which the method was conceived by Mézard, Parisi, and Vira-
soro [MPV87, Chapter V]. The goal here is to estimate the marginals of the following Gibbs
distribution on x € {—1,1}"™:

p(x) o exp

ﬁ(x,Ax)+th:x,-) ,

i=1

where A is a random symmetric matrix with i.i.d. N(0, 1/n) entries and f, h > 0 are fixed
parameters. We will focus on a particular regime of (3, h) known as the replica-symmetric
or high temperature region of the SK model.

Let m; = E,,[x;]. By isolating a single coordinate i € [n] and looking at the influence
of other coordinates on it, Mézard, Parisi, and Virasoro derive the cavity equations, which
are fixed-point equations approximately satisfied by m;;,

n
ZAikmk_)i) s (41)
k=1

n
mij=f ZAikmk—n' , mi=f
k=1
k]
where f(x) = tanh(Bx + h) and m;_,; are new variables. Algorithmically, we can think of
an iterative belief propagation algorithm that tries to compute a solution to these equations,

ZAlkmk_)l) , (4.2)

t+l — t+l
mi;= Z Alkmk_>l >
ki]

initialized at say m{_ ; = 1. This iteration occurs on a set of cavity messages m;_; for
i, j € [n] which conceptually are “the belief of vertex i about its own value, disregarding j”.

The physical techniques predict the asymptotic trajectory of the messages m!_, jand the
outputs m} in (4.2) with respect to the randomness of the matrix A. They say that m' will
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4.1. Background on the cavity method

have approximately independent and identically distributed entries,

mf ~ f(Zy), where Z; ~ N(0, O'tz),
012 =1, Utz+1 = Ef(Zt)z' (4.3)

A heuristic replica symmetric cavity approach for proving (4.3) would go as follows. We

t
k—

; of (4.2) are independent, as if the messages were coming up

make an independence assumption that the incoming terms m

t
k—

from disjoint branches of a tree. By symmetry, the messages are identically distributed.

; in the non-backtracking
summation Y, _, ke Aikn

Then, we appeal to the central limit theorem to deduce

ZAikm]t(Hi ~N (O’E [(mltc—n)z]) :
k=1

k%)

From here, we get that the outgoing message satisfies m!_, i~ f(Z) for Zy ~ N(0, o?) with
o7 defined by the recurrence in (4.3). Using a similar argument, we get m! ~ f(Z;).

[MPV87] also derived from (4.1) a simpler form of self-consistent equations involving only
the marginals themselves, known as the Thouless—Anderson-Palmer equations [TAP77],

m; =~ f Zn:Aikmk—,B(l—%Zn:mi) m;|. (4.4)
k=1

ki

The subtracted term on the right-hand side in which m; re-occurs is the Onsager reaction
term. In the same way that belief propagation (4.2) tries to compute solutions to the cavity
equations (4.1), an approximate message passing algorithm can be iterated to compute
approximate solutions to (4.4),

n

mitt = f kZ:‘Aikm,i - B (1 - %Z(m,i)z) m . (4.5)

k=1
ki

The approximate equivalence between the BP iteration (4.2) and the AMP iteration (4.5) is
a folklore cavity method argument which we elaborate next.
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4.2. Equivalence between message-passing iterations

Belief propagation. We consider BP iterations on A of the form

n
0 _ 0 0
m;_,; =1, l_)} = f; E Alkmk_”,..., E Aikmy_; mi_; | (4.6)

k;t] k;j

n n
t_ ¢ t—1 0 0
m; = f; ZAikmk_)i,...,ZAikmk_)i, mi_;i|

for a sequence of functions ftﬁ R*! — R. (4.6) is a generalization of (4.2) to itera-
tions “with memory” i.e. that can use all the previous messages. At any timestep ¢, the
(m!_, j)lgi, j<n are cavity messages that try to compute some information about the i-th
variable by ignoring the edge between i and j, while the (m!);<;<, are the output of the
algorithm.

Approximate message passing. On the other side, we have an approximate message
passing (AMP) algorithm of the form

t

wl=1, w = AL, ... W) — Z beifia(w™, .. w0, (4.7)
s=1

m' = f,(w',...,.w°), (4.8)

where b;; is defined to be the scalar quantity

n

ap 0

bsy = — Z (wf,...,wi).
llaws

One practical advantage of AMP compared to BP is that is has a smaller number of messages
to track, O(n) vs O(n?).

Theorem 4.1 (Equivalence of BP and AMP). Let T > 1 be a constant independent of n,
ft,ﬁ: R'*! — R fort < T be a sequence of polynomials independent of n, and A = A(n) be a
sequence of random matrices satisfying Assumption 2.1. Generate m*BY according to (4.6) and
m"MP gccording to (4.8). Then

(o¢]
mbAMP 2 BP

so in particular, with high probability,

”mt,AMP _ mt’BP||oo — 5(n—1/2) '
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4.2. Equivalence between message-passing iterations

4.2.1. Heuristic derivation of Theorem 4.1

The equivalence between BP and AMP is folklore in the statistical physics community,
thanks to the following simple cavity-based reasoning. It can be found for example in the
seminal paper [DMMO09, §A] or the survey [ZK16, §IV.E].

We start by rewriting the BP iteration, letting w® = 1 and w;*! = X7 | Aym;__ . The
output of BP is computed as

mt+1 —ft+1( t+1,...,W?) .

Hence it suffices to show that w' asymptotically follows the AMP iteration (4.7). First, (4.6)
can be rewritten

it t+1 t 1 0 0

mi5,; = fin ( i Agm Wy = Ami_, Wi) :
Given that the entries A;; are on the scale of 1/+/n, which we expect to be much smaller
than the magnitude of the messages, we perform a first-order Taylor approximation (the

partial derivatives are with respect to the coordinates of f;;; and the last coordinate is
ignored because w) is constant):

t+1

Aft+1
MR fo (WL whw) _AUZ mi_, e (W whw?) (%)
s=1

Plugging this approximation in the definition of w!*?,

n n t af
t+1 t 0 2 1 £ 0
Wl+ ~ ZAlkﬁ(Wk,..-,Wk) _ZAlk ‘:_)ka S( k:-.-,wk)
k=1 k=1 s=1
n

~ ZAikft(w,i,...,w,g) - Z%Zfs_l(wf_l,..., ) of (wk,...,wg) ()
k=1

k:l s=1

n t
= > Anfi(wh o wh) = > bfia (Wi W)
k=1 s=1

This shows that w/*' approximately satisfies the AMP recursion (4.7), as desired.

The intuition behind (++) is that because we are summing over k, we may expand A%,

and m?~ k on the first order and replace them by averages which do not depend on k:
~E[AZ] ==
1—>k = foor (Wi = Aikm,";_)i, W)= A,-kmg_)i, w?)
N
1

S W)

~ fir (w
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Chapter 4. Rigorous Implementation of the Cavity Method

4.2.2. Diagram proof of Theorem 4.1

In fact, the previous heuristic argument can be made directly rigorous by working with the
tree approximation. It suffices to justify (+) and (x*) in order to prove Theorem 4.1.

The BP iteration takes place on m' € R™ instead of R” which is not captured by our
previous definitions. Most of the work below is setting up definitions to fit this iteration
into our framework. We define diagrams for vectors x € R~V whose (i, j) entry is

t

written x;_,; (for simplicity, we assume A;; = 0 so that the messages m;_,;

can be ignored).

Definition 4.2 (Cavity diagrams). A cavity diagram is an unlabeled undirected graph
a = (V(a), E(a)) with two distinct, ordered root vertices (O O). No vertices may be isolated
except for the roots.

For any cavity diagram a, we define Z, € R""~V by

Zoisj = Z 1_[ Ap(u),p0) >

¢: V(a)—[n] {uv}€E(a)
¢ injective

P(@O)=(i))
for any distinct i, j € [n].

Below is the representation of the first iterate of (4.6) with cavity diagrams. In the
pictures, we draw an arrow from the first root to the second root to indicate the order. If a
(multi)edge exists in the graph between the roots, then the arrow is on the edge; otherwise
we use a dashed line to indicate that there is no edge.

t
k—

“unroots” the first root. A case distinction needs to be made in the summation depending

Multiplying Ajgm; . creates a new edge between k and i in m; .. Summing over k

onifk =iork=jork¢{i,j}. The case k =i is ignored assuming that A;; = 0. The case
k = j yields the “backward step” while the remaining case k # j is the “forward step”.

To apply f1, we need to multiply i — j diagrams componentwise, which is achieved
by fixing/merging the roots i, j and summing over the part outside the roots. For some
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4.2. Equivalence between message-passing iterations

coefficients ¢y, c1, c3, . .. we have'

n
1 _ 0
mi—)j _fl E 'Aikmk—n'

k=1

k#j

t

The output m{*! uses the non-cavity quantities Y\p_, Aym;__

;- The cavity diagrams are
converted back to the usual diagram basis as follows.

Claim 4.3 (Conversion of cavity diagrams). For any cavity diagram o and i € [n],
n
ZAijZa,j—n' =Zui,
j=1

where o’ is the diagram (in the sense of Definition 2.4) obtained from a by adding an edge
between the two roots of a and unrooting the first root.

Since the final output is computed by converting all cavity diagrams back to regular
diagrams using the previous claim, the definition of combinatorial negligibility and the =
notation can be extended to cavity diagrams. We make the following definitions.

Definition 4.4. A cavity diagram « is combinatorially negligible if the diagram «’ obtained
in Claim 4.3 is combinatorially negligible. We naturally extend the = notation to cavity
diagrams as in Definition 3.7.

Claim 4.5. Let x and x’ be in the span of the cavity diagrams such that x = x’. If we let

n n
/ /

k=1 k=1
k#j k#j
o0
theny = vy'.
. . . m .
Ifxi,...,x:,x,...,x} are in the span of cavity diagrams, x; = x; for alli € [n], and

f: RY — R is a polynomial function applied componentwise, then

f(xn,..,x) = f(x),....x)).

Claim 4.5 follows directly from Lemma 3.9.

This completes the diagrammatic description of the belief propagation algorithm. We are
now ready to rigorously justify the approximations made during the heuristic argument.

I The exact values of the coefficients c; are not necessary to compute.
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Lemma 4.6 ((x)).

i af
E t

l—>] ﬁ( Az] mj_ilaws ,,Wlo) .
s=1

Proof. Since f; is a polynomial, it has an exact Taylor expansion. The terms of degree
higher than 1 in the Taylor expansion create at least 2 edges between the roots i and j. All
cavity diagrams with 2 edges between the roots are combinatorially negligible because the
unrooting operation of Claim 4.3 adds one more edge between i and j, and diagrams with
multiedges of multiplicity > 2 are combinatorially negligible (Lemma 3.13). [

Lemma 4.7 ((x)).

- d 1
ZAfkmjjkafs (Who W) = ;fs_l(wf‘l, ) Z W)
k=1
Proof. First, we argue about the replacement of m;_, . We have
l_>k = fs-1 ZAlgmf,__,zi, .. ZA,gm[_”, m_,
t’;tk {’ik
The difference between this and f;_;(w;™},..., w?) are the backtracking terms Ajemy_ .

All terms in the entire Taylor expansion of the polynomlal on the right-hand side around

wf‘l, e w? will introduce at least one additional factor of A;;, which combines with the Al?k

present in the summation over k to become a negligible multiplicity > 2 edge (Lemma 3.13).
This shows that

\ 2 s—1 aﬁ 0y s—1 0 c 2 aﬁ ¢ 0
ZAlk l—>ka S( k,...,Wk) = f;_l(wl ,...,Wi)ZAikaws(wks"'iwk)' (4'9)
k=1

k=1

Second, we argue about the replacement of Afk. This double edge is only non-negligible

if it is hanging (Lemma 3.13). Among the diagrams i
does not attach something to k is the singleton diagram ©). The coefficient of this diagram

i - -» W) the only one which

is the expected value (Corollary 2.10),

=[]

ka)l

The expected value is equal to the empirical expectation up to negligible terms (Lemma 3.21),

laft k)] Z aﬁ

k_

.,w,(c)).
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This implies
n n
of; o 1 of;
2 t 0y @ t 0
DA s (Wi w)) = = ) (e w)). (4.10)
k=1 k=1
The desired statement follows from combining (4.9) and (4.10). O

Proof of Theorem 4.1. Replace the ~ signs in the heuristic argument from §4.2.1 by = and
use Claim 4.5 repeatedly. ]

4.3. Proving the cavity assumptions

We examine the belief propagation iteration (4.6) more closely. The BP iterates have the
following asymptotic structure.

t
Lemma 4.8. m;_,

which have a tree hanging off of i, no edges between the roots, and nothing attached to j.

is asymptotically equivalent to a linear combination of cavity diagrams

Figure 4.1. Diagram representation of the cavity messages m!_, j- Bach cavity diagram in
! .lisatree rooted at i.

1—]

the asymptotic cavity diagram representation of m

Proof. Let a be a cavity diagram with the stated form. The vector whose (i, j)-th entry is
21 AikZy ki is the sum of the diagrams which add an edge between the roots of a, that
can be of 3 types: (1) the “forward step” diagram which puts the j root as a new vertex,
(2) the “backtracking step” diagram which interchanges the first and second roots of @, and
(3) other diagrams where j intersects with a vertex from V() \ {i}.

All diagrams of type (3) are negligible (and stay so when applying further operations to
them), because they create a cycle of length > 2. The backtracking step in (2) is canceled by
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Chapter 4. Rigorous Implementation of the Cavity Method

summing over k # j in the belief propagation iteration. What asymptotically remains is the
forward step (1) which again has the stated form. Additionally, componentwise functions
preserve the stated form. O]

Theorem 4.9. For any j € [n], the incoming messages at j, {ml?_,j : 1€ [n]\{j}}, are
asymptotically independent (Definition 3.15).

t
i—j

Proof. When j is ignored, the cavity diagrams in the asymptotic representation of m
in Lemma 4.8 are equivalent to non-cavity diagrams (replacing n by n — 1). From the
classification theorem (Theorem 3.14), these are asymptotically independent. ]

4.4. State evolution formula for BP/AMP

We show how to simplify the asymptotic state appearing in Theorem 3.20 for the special
case of approximate message passing. Recall the + and — operators from §3.2.

Theorem 4.10 (Asymptotic state for AMP). Under the same assumptions as Theorem 4.1,
the asymptotic state of (w;);<T satisfies the recursion

Wo =1, Wi = filW,, ..., Wy) ", (4.11)
In particular, W; is a centered Gaussian and for all s,t < T, the covariances are

E [Wei Wil = E [fi(Ws, ..., W) 1(W,, ..., WO)] .

Combining Theorem 4.10 and part (ii) of Theorem 3.20 recovers the typical formulation of
state evolution for AMP algorithms. We note that while the formula for computing iterates
of AMP (4.8) might look mysterious at first sight, the AMP recursion in the asymptotic
space (4.11) is much easier to interpret.

We now prove Theorem 4.10. Note that (4.7) is not directly captured by the definition of a
GFOM because by requires computing an average over coordinates. This is only a technical
issue: by Lemma 3.21, empirical expectations are concentrated up to combinatorially
negligible terms. Hence, the following inductive definition of a GFOM for w; € R" and its
corresponding asymptotic state W; is asymptotically equivalent to (4.7):

t
d
wo=1, Wii=Af(Ws... . Wo)— ZE [%(Wt, . .,Wo)l oWty .. owo) . (4.12)
s=1 ¢

The Onsager correction term in (4.12) will be rigorously interpreted as a backtracking
term using diagrams.
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Lemma 4.11. Let Wy, ..., W; € Q be Gaussian (i.e. each W; is in the span of (Z;°)ses). Then
for any polynomial function f : R" — R,

f(Wh.o W)™ = ZE[ w>]w

s=1
Proof. Expand f(W;,...,W;) as

FWio W) = Y o+ ) ez,

o€s8 eT\8

f(M/ls---:M/t)_:ZCO'ZS?,

oE€S

for some coefficients ¢; € R. When o € 8, we have

¢, |Aut(o)| = [Zoof(Wl, . Wt)] (orthogonality)
Z Z W]E[ ,Wt)l (Lemma A.5)
= t E [ZO‘iW_] E[ of Wt)l . (Lemma 3.24)

o N a‘/‘/s >

s=1
The second expectation does not depend on ¢. Summing the first expectation over o
produces W,™ as desired. ]

Now we complete the proof of Theorem 4.10.

Proof of Theorem 4.10. We prove by induction on t that W,y = f;(W,,..., W)*. For t = 0,
we have w; = Afy(1) so W = f3(Wp)* and the statement holds.

Now suppose that the statement holds for Wy, ..., W, for some t < T. The asymptotic
state of Af;(wy,...,wq) is fi(Wh, ..., Wo)™ + fi(W,, ..., Wp)~. By the induction hypothesis
and Fact 3.23, forany s < t

W, = fios(Wor, ., Wo) .

Combining this with Lemma 4.11, we see that the asymptotic state of the Onsager correction
term equals f;(W,, ..., Wp)~. This concludes the induction.

In particular, Wyy; = f;(W,, ..., Wy)* has no constant term and is in the span of 8, so it
has a centered Gaussian distribution. The covariances are, for all s, < T,

E [WeiWert] = B [fi(Ws, ..., W) T fi(Wh, ..., W) ]
=B [fi(Ws, ..., Wo) fi(Wh, ..., WO)]

where the last equality follows from Lemma 3.25. This completes the proof. ]
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4.5. Summary

This chapter demonstrated that the cavity method from physics — at least, its algorithmic
applications — is correct simply because every heuristic part of the argument holds “up to

cyclic diagrams”.
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CHAPTER 5.

Beyond a Constant Number of
Iterations

In summary, we have so far described the trajectory of first-order algorithms for a
constant number of iterations. We now turn to the question of how these algorithms behave
when the number of iterations scales with the dimension n of the matrix.

A primary motivation is to understand the convergence of iterative methods: whether
they approach a fixed point, or continue searching indefinitely without success.

A second motivation is to study algorithms with a warm start, such as spectral initial-
ization [MV21, MV22, LW22]. If the initialization step itself can be implemented via a
first-order method (e.g., power iteration), we may hope to analyze the composite algorithm
using our diagrammatic framework. This approach is demonstrated for constant-depth

composition in Figure 5.1.
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Figure 5.1. Composing diagram representations. The leaves of a diagram access the entries
of the input, so we draw a box around each one to indicate that the input’s
entries are not yet fixed. When another diagram is used as input, it is duplicated
at each leaf. The treelike diagrams in the result are a sum over i of contracting i
path edges from both sides of the merged root/leaf. Note that here the second
and third output diagram are the same.

5.1. Combinatorial phase transitions

In order to show that that the long-time behavior is a delicate question, we will compute
in §5.4 that some diagrams of w(1) size are no longer asymptotically Gaussian, breaking the
classification Theorem 3.14. Larger-degree vertices in a diagram can access high moments
of the entries of other diagrams, which will detect that these quantities are not exactly
Gaussian.

However, in typical first-order algorithms, high-degree diagrams only appear in a con-
trolled way. Thus we expect that for a class of “nice” GFOMs, the Gaussian tree approxima-
tion continues to hold for many more iterations. To demonstrate this, we examine debiased
power iteration, which is the iterative algorithm

xo=1, Xxp1=Ax— X1, (5.1)

(5.1) has a very simple tree approximation (the ¢-path diagram). Due to its basic represen-
tation in the tree space, this algorithm will re-appear in §5.5 and §6.2.2.

Note that by Theorem 4.1, for constantly many iterations this algorithm is asymptotically
equivalent to power iteration on the non-backtracking walk matrix, which is the algorithm

my =1, m;1 = Bm,,
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5.2. Analyzing power iteration via combinatorial walks

n
X1, = E AikMy i,
k=1

where B € R">"" is the weighted non-backtracking walk matrix defined by B;_, k., = Ak,
if j=kandi # ¢, and B, x—,, = 0 otherwise.

We distinguish several regimes of T = T(n) depending on the obstacles that arise when
trying to generalize the tree approximation for (5.1) to a larger number of iterations.

« When T « 10350 gn, we expect the proofs of Theorem 3.14 and Theorem 3.17 to
generalize with minimal changes. The total number of diagrams that arise can be
bounded by T which is n°") in this regime.

« WhenT ~ lolgoﬁ) gn, there are TOD) = poly(n) many diagrams to keep track of. This
could overpower the magnitude of some cyclic diagrams, and make the naive union

bound argument fail. This barrier is also the one of previous non-asymptotic analyses
of AMP [RV18, CR24].

« When T < n® for some small constant § > 0, we show in the next sections that
the tree approximation of debiased power iteration still holds by a more careful
accounting of the error terms. We predict that this can be extended up to T < /n.

« When T ~ +/n, the tree diagrams with T vertices are exponentially small in magnitude
(see Lemma 2.9) and the number of non-tree diagrams starts to become overwhelm-
ingly large. At the conceptual level, random walks of length > +/n in an n-vertex
graph are likely to collide. Therefore, it is unclear whether or not the tree diagrams
of size > +/n are significantly different from diagrams with cycles. This threshold
also appears in recent analyses of AMP [LEFW23], although it is not a barrier for their
result.

5.2. Analyzing power iteration via combinatorial walks

For constantly many iterations of debiased power iteration, by Theorem 3.17, we know
that x; is well-approximated by the t-path diagram, denoted Z; .1,. Here we prove that
this approximation holds much longer. To simplify the calculation, we assume:

Assumption 5.1. Let A be a random n X n symmetric matrix with A; = 0 and A;; drawn

ﬁ, nl_l} foralli < j.

We prove that for this iterative algorithm we can extend Theorem 3.17 to a polynomial

independently from the uniform distribution over {—

number of iterations, hence overcoming some obstructions mentioned in §5.1. A similar
argument can also show that Z; ., remain approximately independent Gaussians for ¢
in the same regime. Taken together, we see that the “usual” state evolution formula for
constantly many iterations continues to hold much longer, up to conjecturally /n iterations.
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Theorem 5.2. Suppose that A = A(n) satisfies Assumption 5.1 and generate x; according

to (5.1). Then there exist universal constants c,d > 0 such that for all t < cnd,

e = Z1pan|,, = 0.

To obtain the tree approximation of algorithms with poly(n) many iterations, we need
to very carefully count combinatorial factors that were neglected in §3.2. The total number
of diagrams in the unapproximated diagram expansion is very large, and furthermore, each
diagram can arise in many different ways if it has high-degree vertices. To perform the
analysis, we decompose x; in terms of walks of length ¢; we need to track walks instead of
diagrams so that we do not throw away additional information about high-degree vertices.

Our goal is to show that the walk without any back edge (the t-path) dominates asymp-
totically. We will proceed as in the proof of Theorem 3.14 by bounding the g-th moment
of x; — Z; path- This moment can be represented diagrammatically using g-tuples of non-
backtracking walks with at least one back edge.

Definition 5.3. A (g, t)-traversal y = (y,,....,y q) is an ordered sequence of g walks, each
of length t and starting from the same vertex:

Y= ({ui,l =, ui,z}, {ui,z, ui,s}, .- -,{ui,z, ui,t+1}), foralli e [CI]-

Each traversal y is naturally associated to an improper diagram (V(y), E(y)) with V(y) =
{uij:i€[ql,j€ [t]} and E(y) = {(uij, uij+1) : i € [q],j € [t — 1]} (viewed as a multiset).
We use the notation Z), = Z(y(y),5(y)) following Definition 2.5.
« A traversal is even if each edge appears an even number of times in ;e[q] ¥;-
« A traversal is non-backtracking if every walk of the traversal is non-backtracking, i.e.
Ujjq1 # ujj—1 foralli € [qland j € {2,...,¢t - 1}.
« A traversal is non-full-forward if every walk of the traversal has a back edge, namely
forall i € [q], there exist j; # j, such that u;;, = u;,.

Let W be the set of (g, t)-traversals that are simultaneously even, non-backtracking,
non-full-forward, and have no self-loops.

Definition 5.3 is motivated by the following decomposition:

Claim 5.4. Suppose that x; is generated according to (5.1) and A satisfies Assumption 5.1.
Then,

E [(xt - Zt—path)q] = Z E [ZY] :

yew?

We now proceed to proving Theorem 5.2. We will bound the magnitude of E [Zy,,-] for
y € WY, then count the number of traversals in W{. Both bounds will depend on £ — V' +1

80
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(where V is the number of vertices of the traversal and E the number of edges), which
quantifies how close the traversal is to a tree of double edges.

Our first insight is that the traversals contributing to (x; — Z; pam)? become further from
trees as q increases because each walk must have a back edge.

Lemma 5.5. Foranyy € W! with V vertices and E edges, % -V+1> %.

Proof. Assign to each vertex all the edges going into it in y. Each non-root vertex must
have at least 2 incoming edges: the edge which explores it, and since y is even and non-
backtracking, an edge which revisits it a second time. Since y is non-full-forward, each y,
has a back edge; the first back edge in each y, yields an additional incoming edge for each
i (either it points to the root, which has not yet been counted, or by assumption that it is
the first back edge in y,, it cannot cover both incident edges from the first visit). We have

E>2(V-1)+gq,
as needed. []
Lemma 5.6. Foranyi € [n] andy € W] with V vertices and E edges,
B[ 2| < 0 (n(EVD) .

Proof. Using Assumption 5.1, we can directly count

(n-1)(n-=-2)---(n=-V+1)
ns

=0 (nV_l_%) . D

|E [Zy,i“ <0(1)-

Finally, the following lemma captures the counting of traversals. Its proof is deferred to
the next section.

Lemma 5.7. The number of y € W with V vertices and E edges is at most
Oq(t)é(%—V+l)+2q ’
where Oy(+) hides a constant depending only on q.

Proof of Theorem 5.2. We decompose the sum over y € WY according to the value of
r= % — V + 1 using Lemma 5.6 and Lemma 5.7:

E [ (xts = Zipatn)?] < Og(£) )" 0g(1)"n ™"

r>%
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Chapter 5. Beyond a Constant Number of Iterations

If t satisfies t < cn® with 0 < § < 1/6, the sum is a geometrically decreasing series and
therefore it is bounded by the first term which is Oq(tsqn"%). Under the condition § < 1/10,
for g being a large enough integer we obtain for some ¢ > 0,

B [(xt,i - Zt—path,i)q] < O(l/n2+€) .

This is enough to imply that [|x; — Z; pamh || 20 by a union bound over the n coordinates,
then Markov’s inequality and the Borel-Cantelli lemma. ]

5.3. Counting combinatorial walks

Our goal here is to prove Lemma 5.7.

In the extreme case V ~ % where the moment bound Lemma 5.6 is the weakest, typical
traversals y € WY look like trees of double edges with a constant number of back edges. In
this regime, most vertices will have degree exactly 4. Following this intuition, our encoding
will proceed by compressing the long paths of degree-4 vertices connected by double edges.

Definition 5.8. For y € WY, let y_ be the traversal obtained by replacing all maximally
long paths of degree-4 vertices in y by a single special marked edge between the endpoints
of the paths, and removing the internal vertices of the path. (The paths should be broken
at the root so that it is not removed.)

Note that these operations can create self-loops in y .

Lemma 5.9. Foranyy € Wi,

[E(y )l <3IE(p)| -6(IV(p)|-1) +2q.

Proof. For k € N, let Vi.(y) be the set of non-root vertices of y of degree exactly k. Since y
is an even traversal, we get by double counting the number of edges in y

21V ()] +4lVap) | + 6 (IV ()] = V()| = Va(p)] = 1) < 21E(p).

Moreover, the number of edges removed during the compression is 2|V, (y)|. This means
that

[E(Y)| = 1E(y )] = 2[Va(p)| > 6(IV(p)| = 1) — 4|Va(p)] - 2[E(p)].

Finally, since 7y is non-backtracking, non-root degree-2 vertices can only be created in y by
pairing endpoints of the walks, so that [V,(y)| < ¢q/2. The desired inequality immediately
follows. []

We are now ready to prove Lemma 5.7.
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Proof of Lemma 5.7. We encode a traversal y € W as follows:

1. We first encode y,. We write down the sequence of vertices of each walk and indicate
whether each step should be the first step of a marked edge (Definition 5.8). Every
time we traverse a marked edge for the second time, instead of recording the next
vertex of the walk, we record the identifier of the marked edge. We also add a single
bit of information to each edge to indicate whether it is the last edge of its walk. The
target space of the encoding has size O(|E(y,) NIE@,

2. We then expand the marked edges in y, of which there are at most |E(y_)|/2. For
each marked edge, we write down the length of the path that it replaced. This can

be encoded using “stars and bars”. Initially allocating 2 edges to each marked edge,
there are at most (|E(YE)|/2) such objects.

We claim that this encoding allows to reconstruct y, and its length can be bounded by

eyl E g (£ )"
O(lE(y ) ”C( )<O|EC|) VCO( )
EPIDTN ey 172) < OUED Bl
— Oq(t)lE(Yc)l )
The proof follows after plugging in the bound of Lemma 5.9. [l

5.4. High-degree tree diagrams are not Gaussian

Care must be taken when studying the diagrams of superconstant size. In this section
we compute that the star-shaped diagram with log n leaves and the root at a leaf is not
Gaussian (its fourth moment is significantly larger than the square of its second moment).!
This diagram appears after only T = O(loglog n) iterations in the recursion

2
x; = Al Xee1 = (x1) X141 = AXT.

However, we expect that this diagram does not contribute significantly to nicer GFOMs
that strictly alternate between multiplication by A and constant-degree componentwise
operations.

2
Fixing d, let y denote (d-star graph)*. We compute that E [Z;{ 1] > E [Z)il] when

d ~ log n. By Lemma 2.9, the variance is

E [z;l] = (1+0(1)) |JAut(y)] = (1+0(1))d! .

! Similarly, adding an edge between two of the leaves creates a cyclic diagram with negligible variance but
non-negligible fourth moment.
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Chapter 5. Beyond a Constant Number of Iterations

When computing the fourth moment E [Z;{ 1] for constant d, the terms that are dominant
consist of (1) a perfect matching between the four edges incident to the root, (2) perfect
matchings between their d children. There are 3(d!)? such terms, recovering the fourth
moment of a Gaussian with variance d!.

For d = log n, another type of term becomes dominant. These are the terms where all
four edges incident to the root are equal, then we have a perfect matching on 4d objects
divided into four groups of size d such that no two objects from the same group are matched.
Denote the latter set of matchings by M(d, d, d, d).

Lemma 5.10. Up to a multiplicative poly(d) factor, |M(d,d,d,d)| 2 3%(d!)>.

These terms come with a % factor due to the multiplicity 4 edge. When d = Q(logn),
the extra factor of 3¢ overpowers the % and makes the fourth moment much larger than
the the squared variance (d!)%.

Proof of Lemma 5.10. We establish a recursion. There are (3d)(3d — 1) - - - (2d + 1) ways to
match up the objects in the first group, which can be partitioned in O(d?) ways depending
on how many objects in each other group are matched. We will recurse on the “maximum-
entropy” case in which the first group matches d/3 elements from each other group, using
the following claim.

Claim 5.11. Letd,k € N such that % is an integer. Counting the matchings between d
objects and a subset of (k — 1)d objects in k — 1 groups, as a function of the number of objects
matched in each group, the number of matchings is maximized when there are k;il matched
elements per group.

Proof of Claim 5.11. Letting ny, ..., ng_; be the number of matched elements per group, we
may directly compute this number as

k-1

[ [@n,

i=1

where (d) =d(d — 1) --- (d — k + 1) is the falling factorial. When n; and n; are replaced
by n; — 1 and n; + 1, the ratio of new to old values is

d—l’lj
d—ni+1

which is at least 1if n; > n; + 1. Hence the n; are equal at the maximum. ]

Using Claim 5.11, up to a factor of O(d?),

IM(d, d,d,d)| > (3d)(3d — 1) - - - (2d + 1)|M(2d/3, 2d /3, 2d/3)]
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5.5. The BBP transition

3d
- (%) (%)M IM(2d/3, 2d /3, 2d/3)]

where the second equality holds up to a poly(d) factor by Stirling’s approximation:

d
Fact 5.12 (Stirling’s approximation). Up to a multiplicative poly(d) factor, d! =< (4) .

e

Recursing via the same principle,

IM(2d/3,2d/3,2d/3)| > (4d/3)(4d/3 = 1) -~ (2d/3 + 1)|M(d/3,d/3)|
= (4d/3)(4d/3 — 1) --- (2d/3 + 1)(d/3)!

4g\ 4413 (30\24/3 | g\d/3
() )
where the last equation follows from Fact 5.12. In total,

d 2d
IM(d, d, d,d)| > 3¢ (Z) . O

5.5. The BBP transition

In this final section, we speculate on how Theorem 5.2 could be used to recover the lower
bound in the BBP transition of the spiked Wigner model.

The goal in the spiked Wigner model (Example 2.3) is to understand under what condi-
tions on A it is possible to recover u from an observation of A alone. Since the spectrum of
W is contained in [-2 — 0(1), 2 + 0(1)] with high probability, one may predict that A will
exhibit an outlier eigenvalue when A > 2. Perhaps surprisingly, this phenomenon already
occurs when A > 1. This marks the onset of the BBP transition, named after Baik, Ben
Arous, and Péché’s work [BBP05] on the analogous transition in the Wishart setting.

Theorem 5.13 (BBP transition for Wigner matrices). Let A be drawn from the spiked
Wigner model, i.e.,
A=luu’ +W,
where W satisfies Assumption 5.1 and u is uniformly random on the sphere 8"~'. Let Apayx
and up.x denote the largest eigenvalue of A and its corresponding (unit) eigenvector.
1. If A < 1, then (u, Umax)? — 0 and Apax = 2 + 0(1).
2. If A > 1, then as n — oo, with high probability,

1

<u, umax>2 =1- ﬁ + 0(1) s
1

D = A+ =+ 0(1).
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Chapter 5. Beyond a Constant Number of Iterations

The eigenvalue BBP transition for the spiked Wigner model was proved by Féral and
Péché via the trace method [FP07]. An alternative, algebraic proof appears in [BN11, §4.1].

We now sketch a constructive approach to Theorem 5.13 by analyzing the following
nonbacktracking power iteration on A:

xo=1, x1=Axy, Vt=>2 xt=Ax_1—Xt_p. (5.2)

While we expect similar arguments to work for related iterative schemes, (5.2) has a partic-
ularly simple representation in the Fourier diagram basis: asymptotically, it corresponds to
the length-t path diagram. Unlike in the null model, where certain algorithms converge
to an approximate top eigenvector in a constant number of iterations (see §6.1.1), in the
spiked model, ©(log n) iterations are required.

Our first lemma gives an exact decomposition of the iterates of (5.2) in terms of iterates
under the null model. The proof is a straightforward induction, which we omit.

Claim 5.14. Let

0,=0, Q,=1, Q,,=WQ,-0, 4,
P,=0, Py=u, Py =WP, —-P,.

Then for everyt > 1,

t—1

x; = Ax;_,u)u+A Z (xt—s—1,u) P+ Q, .
s=1
Claim 5.14 shows that to understand the behavior of x;, it suffices to understand the

sequences P; and Q,, which are iterations in the null model W. By Theorem 5.2, the vectors
Q, are well-approximated by their tree approximation (the length-t path diagram) even
when t is polynomial in n.

We conjecture that the same holds for P; as well.

Definition 5.15. Define the tree approximations of Q, and P; as

¢ t
0= ), |]aoumw.  Pe=va- Y wan | A

i [t+1]>[n] j=1 i [t+1]—[n] j=1
Conjecture 5.16. Suppose A satisfies Assumption 2.1. For any t = t(n) with

limsup t(n)/logn < oo

n—oo

we have, with high probability,

~( 1
w—O(ﬁ)’“}SF

max \Vn - Py — P
S<t

Qs_Qs

ot
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and

mas (B B, ) =0 (V) max (6,0, = 5 (V) . max (7.3, =5 (v
) e

Note that these conditions are natural generalizations to the regime t = w(1) of the fact
that distinct Fourier diagrams are approximately orthonormal with high probability.

Let us now explain how Theorem 5.13 is related to Conjecture 5.16. The key idea
is that Conjecture 5.16 implies that the decomposition in Claim 5.14 is approximately
orthogonal, allowing us to explicitly compute the norm and projections of x;. For example,
this reasoning yields

<xt> u>2 ~ Az <xt—1a u>2 )

t—1
leclly > A2 )" (g )+,
s=1

where the ~ sign hides multiplicative factors of the form 1 + 0(1/ y/n). Since with a random
initialization, we have (x,, u)* ~ 1/n, if A > 1, then after t = C log n steps for a large
constant C, we obtain

(x;, u)* A2 1
2~ 2 - y2°

which matches the eigenvector overlap in Theorem 5.13. Establishing Conjecture 5.16 is an
interesting direction for future work.

5.6. Summary

In this chapter, we showed that the tree approximation remains valid for w(1) iterations
when approximating the top eigenvector of a matrix. We also discussed a potential applica-
tion of these ideas to recovering a phase transition in random matrix theory. Similarly, in
the next chapter, we will be able to implement our idea for optimization in the null model,
which only requires a constant number of iterations.
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CHAPTER 6.

On Optima of Polynomials

This transition chapter illustrates how the concept of tree approximation, developed
in Part I, can be leveraged to analyze the optima of random polynomials. As a testbed, we
study the problem of maximizing a random quadratic polynomial over the £,-ball:

n

max p(x), p(x) := Z CijXiXj, (6.1)

<1 =
Il =

whose coefficients are i.i.d. normalized Gaussians.

For p = 2, (6.1) converges to 2 as n — co. We first show that the basic power method
converges to this value in ©(n?/?) steps. We then prove the main consequence of Part I, Theo-
rem 6.9, which reduces lower bounds on quadratic optimization to a combinatorial problem
in the tree basis. We explicitly solve it for p = 2, and re-interpret Montanari’s algo-
rithm [Mon19] for p = co. Finally, we initiate our study of worst-case counterparts by
characterizing the optimal value of arbitrary quadratic polynomial optimization.
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6.1. Tight analysis of power iteration

We aim here at comparing iterative algorithms for the simplest random optimization
problem one can think of,

max [(x, Ax)|

6.2
st. xeR", |x]|,=1 (62)

where A is an n X n Wigner matrix with entries of variance 1/n. This is the spectral norm
of A, and a standard trace method argument shows that the optimum of (6.2) is 2 + 0(1)
with high probability, as n — co.

The textbook algorithm for computing the spectral norm of a matrix is the power method,
which is nothing else than gradient descent with infinite step size applied to (6.2), i.e.,

xo=1, X1 = AXy . (6.3)

A folklore argument shows that this algorithm achieves (1 — O(¢))-approximation to (6.2)
in O(log n/¢) iterations when A is a positive semidefinite matrix [Tre17b, Theorem 9.6].
However, this is not true anymore when A has both positive and negative eigenvalues,

because of cancellations happening in the spectrum.
Our main result in this section is that when A is a Wigner matrix, power iteration

2/3 jterations.

typically converges in = n

We first give an elementary argument showing the much weaker bound that power
iteration does not converge within a constant (independent of n) number of iterations.
While the proof of the following proposition is easy and does not need our entire theory, it
will serve as an introduction for the methodology we will use for other examples. It also
points out at the key symmetry of power iteration that is responsible for its slow behavior.
As we will see later, algorithms that break this symmetry converge in constantly many

iterations.

Proposition 6.1. Suppose that A satisfies Assumption 2.1. Then for any constant T > 0
independent of n, the T-th iterate of (6.3) satisfies

|{(xT, AxT)| :5( 1 )

[

vn
with high probability over A.

Proof. By Definition 3.3, x; has asymptotic state X; defined by induction by
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6.1. Tight analysis of power iteration

First, using Theorem 3.17,

1 g o~ 1
- (x, Axy) = 2B [ X, X/ ] + O (%) ,

with high probability. Similarly,

1 , ~(1
- (xt,x;) =EX;7+0 ($) ,
with high probability.
Moreover, for any T > 0, we have X7 = Y.I_, ¢;P;, where P, is the length-t path diagram,
and ¢; counts the number of Dyck paths' starting from (0, 0) and ending at (T, t).
Since (Py, P,, ..., Pr) are orthonormal for E (they are simply different diagrams), we
have:
1. EX% = tho ¢? is counting the number of Dyck paths from (0, 0) to (2T, 0), which is
exactly the Catalan number Cr.
2. E [XTX}L ] = ZtT:_Ol cici—1 = 0 because ¢; = 0 when t and T have different parity.
Putting everything together, we get

|{x:, Axy)| :5( 1 )

. —
[EAlp

\n
with high probability over A, as desired. [l

Remark 6.2. Note that in the previous proof, we can make the coefficients c¢; of power
iteration in the Fourier diagram basis explicit using the reflection principle. More precisely,
by reflecting a non-Dyck path at the first hitting time of y = —1, we get a bijection to
arbitrary paths starting from (0, 0) and ending at (T, —(t + 2)). Therefore,

T+t T+t
2 2

0 otherwise

T T
( ) — ( ) if t and T have the same parity
c = 1+

Although we took a more explicit route, the proof can be summarized by the fact
that (x;, Ax;) is the average entry of the vector x; ®© Ax;, which like any &,-symmetric
polynomial in A, has asympotically independent entries. Therefore, it is very concentrated
around its expectation, and |(x;, Ax;)| has to concentrate around the same value. The fact
that (x;, Ax;) has expectation 0 can be seen more directly: since power iteration does not

1 A Dyck path is a path in the (x, y)-plane with allowed steps (x,y) — (x+1,y+1) and (x,y) — (x+1,y—1),
and whose y-coordinates are all non-negative.
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break the symmetry between the positive and negative eigenspace of A, the distribution of
(x;, Ax;) has to be symmetric around the origin.

We conclude that the special symmetry of power iteration is responsible for its dimension-
dependent complexity. This phenomenon is well-known in statistical physics, and suggests
a simple modification of power iteration.

Our main theorem in this subsection is the following. It generalizes Proposition 6.1 from
t = O(1) to t < n?/3. For technical reasons, we assume now that A is a GOE matrix, but we
expect that small modifications to our approach would apply to Wigner matrices as well.

Theorem 6.3. Let A be a GOE matrix (i.e., A;jj = Aj; bid N(0,1/n) foralli < j, and
Aji bid N(0,2/n)). Then for any e > 0 and t < O(ng_g), the t-th iterate of (6.3) satisfies

[ 43/4
|<xt: AJ:t>| < O (t_) — 0(1)’
[EAIP: \n

with probability 1 — o(1).

Our proof of Theorem 6.3 is based on the eigenvalue rigidity of Wigner matrices, first
established in [EYY12]. This is a uniform concentration result on the location of the
eigenvalues.

Definition 6.4. For all i € [n], let A¥ € [-2,2] be the classical location of the i-th
eigenvalue of a Wigner matrix as predicted by the semicircle law, i.e., the unique solution
to

1 [? '
— Vi—xZdx = -
21 A n
The following theorem is a corollary of [EYY12, Theorem 2.2]. Note that the uniform
concentration of the bulk eigenvalues can be improved to O(1/n), but we will not need
this stronger fact here.

Theorem 6.5. Let Ay > ... > A, be the eigenvalues of a Wigner matrix. Then for any ¢ > 0,

we have

2
—2+¢
<n 3,

max |; — A
i€[n]

with probability 1 — o(1).

We will also use the following simple estimate on the classical locations of the semicircle
eigenvalues.

Lemma 6.6. Ift < n®3, then

=

i) =5 (6.4)
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6.1. Tight analysis of power iteration

Proof of Lemma 6.6. The asymptotics trivially hold when ¢ is a constant, so we can assume
without loss of generality that t is a large enough constant. As ¢ — 0, we have

éQEZML\F/ J:iw_ 1)

Equivalently, there exist constants Cy, C, > 0 such that for ¢ > 0 small enough,

Ced? < — V4 x2dx < Cped/? .

2—¢

Therefore, for small enough ¢ > 0, we have that i € [n] satisfies % < C16%2, then Al > 2—¢,
and if % > 632, then A7 < 2 — &. This means than the number of i € [n] such that
A7 > 2 —¢eis at least Cine®’? and at most Cyne’/2. Up to a factor 2, the same holds for the
number of i € [n] such that |1} > 2

We deduce that when ¢ is a large enough constant,

n 2t t
w\ 2t n 1 4'n
Dz g (2] 2

i=1

— E.

For the other direction, we decompose the sum as

n

L= 2 W)
i=1 Jj=0 ic[n]
2-|A7|e[27U*D 27))

Applying the above estimate on the number of eigenvalues e-close to 2 for small enough ¢,
there exists a universal constant ¢ > 0 such that

n
2 ) 5 3 =2 n U w2 - o)

i=1 j>0
<a'n ) (1-277)" 2202 pn(2 - o)t
Jj>0
- 4'n
pS m .
This finishes the proof. ]

Theorem 6.7 (Bernstein inequality on the sphere). Let x be uniformly random vector on
the sphere of radius \/n. Then for anya € R" andt > 0,

oSt cenfremale i)
r = sexp|-Cmin|n, ——, 7—— .
lall? llalls

n

Zai (x;2 - 1)

i=1
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Proof of Theorem 6.7. Let g ~ N(0,I,). By rotational invariance, the random variable
\n - ﬁ is uniformly distributed on the sphere of radius y/n. With probability 1 — e~

we have ||gll, < O(y/n), and the result follows from Bernstein inequality applied to
i aig?. ]

Proof of Theorem 6.3. Let § € (0, 1). The expression (x;, Ax;) = <1, Az”ll) is odd in A, so
up to replacing A by —A and using a union bound, it suffices to bound

p(t) :=Pr ((x, Ax;) > 6 ||xt||§) ;

We start by rewriting the expression in an orthogonal eigenbasis (uy, ..., u,) of A, cor-
responding to eigenvalues (Ay,...,4,). Let @; := (xo,u;). When A is a GOE matrix, by
rotational invariance, the eigenbasis can be chosen so that U = [u; | ... | u,] is has a

random orthogonal matrix (Haar measure in O(n)). In this case, @ = U1 is uniformly
distributed on the sphere of radius y/n.?

Next, we have

n
Xy = Atl = Z /lfaiui,

i=1

so we can rewrite equivalently

p(t) =Pr (Z el >80y A;?faf) = Pr (
i=1 i=1

We next show that we can replace A; by A} in this expression as long as t < n
Theorem 6.5, we know that for all i € [n] such that |1

S

i=1

(A2 — 522 o > 0) : (6.5)

213, Applying

> 0.1 and for any ¢ > 0, we have

=) (10 (i), A= ()" (120 (n78)) |

On the other hand, the indices i € [n] such that
the sum in (6.5),

i

< 0.1 have a negligible contribution to

Do PE s af < max |- SAF| < pi=0(1) - 017,

. i€[n]
i€[n] ]
122 |<0.1 |27]<0.1
After reparametrizing §:=6-0 (tn_%_g ), we have

n

p(t) < Pr (Z ((40)* =8 (4)™) 2 = —n) .

i=1

2This is the step that crucially uses the assumption that A is a GOE matrix.
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6.1. Tight analysis of power iteration
Let ¢; == (A*)**! =5 (1)* and f(a) := X, cia®. Assume that n is odd for simplicity. The
sequence (A});e[n—1] is symmetric around 0, and since E af =1,

n—1 n

BEf==6) (4)"-2"2-8 <=6 ()", (6.6)

i=1 i=1

We have n + E f < 0 when ¢ is a large enough constant, so by Theorem 6.7,

p(t) <Pr(f(a)-Ef>-Ef-n)
2
< exp (—Cmin (n, (Ef+n) _Ef_n)) .

lellZ 7 llelle

Moreover, by (6.6), as long as 5> 0.1, we have

Syr, () —n)
@f+n? _ (OZ 00" ) g
lel; =z () £z

where the last step follows from applying Lemma 6.6 to both the numerator and the
denominator. Applying similarly Lemma 6.6 to the other term, if § > 0.17,

-Ef-n@ > 52?:1 (A?)Zt -

25

lello 4t t3/ 2
Putting everything together, we get that as long as 5§ > 017" and t < n?3, we have
p(t) < e~ (En/t) Thig goes to 0 if § > t3/%/+/n, as desired. ]

Remark 6.8. The analysis of Theorem 6.3 is essentially tight. This is because the gap be-

tween the largest eigenvalue in magnitude and the second largest eigenvalue in magnitude

2/3

of a Wigner matrix scales like n*/°. As witnessed in our proof of Theorem 6.3, the Rayleigh

quotient achieved by power iteration is driven by the ratio

|Z A2t+l|
Ve

which gets close to 2 whenever t is large compared to the aforementioned eigenvalue gap.

6.1.1. Symmetry-breaking power iteration

One may initially wonder whether the dependency of the runtime on the spectral gap is
necessary for estimating the maximal eigenvalue. We show that this is not the case, and

97



Chapter 6. On Optima of Polynomials

that a very minor variant of the basic power method dramatically improves the speed of
convergence.
Consider
xo =1, Xee1 = (I + A)x;

While A and I + A have the same eigenvectors, the spectrum of I + A is not symmetric
around 0.
We can reproduce the proof of Proposition 6.1 in this setting. x; has asymptotic state X,

where
)(b ::1, .X&+1 ::)(:-+')<; +‘)Qu

Therefore, we can decompose X; = ZtT:() c:P; in the Fourier diagram basis, where P; is the
length-t path diagram, and c; counts the number of Motzkin paths® starting at (0,0) and
ending at (T,t). Then
1. EX% = Ztho ¢? counts the number of Motzkin paths from (0,0) to (27, 0). This is
exactly the Motzkin number M, (OEIS sequence A026945).
2. E [XTX}L] = ZtT:_Ol ci¢r4+1 counts the number of Motzkin paths from (0, 0) to (2T +1,0)
whose T-th increment is (+1,41). Call Ny this number. By reflecting a path around
x = T/2, we get that this also counts the number of Motzkin paths whose T-th
increment is (+1, —1). Therefore, 2Nt = Myry1 — My, since Myr is the number of
Motzkin paths of length 2T + 1 where the T-th increment is (+1, 0).

In summary, the value achieved by this algorithm is

5. Mory1 — Moy Moraq
2Mpr Mar

-1.

Standard asymptotics of Motzkin numbers [FS09, Example VI.3] ensure that

3n+1 1
M,=C- TP (1+O(;)) s
for some constant C > 0, so that Myr41/M,r = 3+ O(1/T), and so the algorithm achieves
value 2 - O(1/T) as T — co.

6.2. Optimization in the tree basis

The algorithm from the previous section achieves the optimal value as T — co. We now
present an alternative route to design the algorithm which achieves the best possible value
as n — oo, among all iterative algorithms running for any fixed number of T iterations.

3 A Motzkin path is a path in the (x, y)-plane with allowed steps (x,y) — (x+1,y+1), (x,y) — (x + 1, 1),
and (x,y) — (x + 1,y — 1), and whose y-coordinates are all non-negative.
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6.2. Optimization in the tree basis

6.2.1. The main theorem

The following theorem is the key connection between the Fourier diagram basis and the
value of random quadratic polynomial optimization:

Theorem 6.9 (Optimization in the tree basis). Assume that A satisfies Assumption 2.1.
Let T be a collection of one-dimensional random variables indexed by rooted trees, whose
distributions match the asymptotic distribution of a single coordinate of the tree diagrams
from Theorem 3.14. Then for any integer p > 2,

n
2
max Z Ajjxixj > (2-0(1)) - n'"r. sup E [ZZ+] .
||x||p<l i Zespan(7T)
’ EZP<1

The proof of Theorem 6.9 is an easy consequence of the tools we developed in Part I.

Proof. First, we claim that for any Z € T, there is an iterative algorithm whose asymptotic
state is equal to Z (viewed as a tree). This follows from an inductive argument on the
number of vertices in the tree.

1. Suppose that the root of Z has degree 1. Let k > 1 be such that Z can be decomposed
from the root into a path of length k, followed by a tree Z’, which is either a singleton
or has a root of degree larger than 1. By induction, let 2z’ be the iterate of an algorithm
with asymptotic state Z’. Consider the iteration z_; = 0, zp = 2/, and z;41 = Az; — z;_4
for all i > 0. Then zi has asymptotic state Z.

2. Otherwise, Z can be obtained by grafting several branches at the root. An iterate with
asymptotic state Z can be obtained by applying the appropriate multivarite Hermite
polynomial to the iterates computing the different branches.

More generally, an algorithm whose asymptotic state is an arbitrary element in the span of
J can be obtained by taking linear combinations of the previous construction.

Let z be the output of an algorithm with asymptotic state Z. Then z®? has asymptotic

state Z?, so

1 1 <
il p_ E P P
z|l5, = z. > EZP €1 6.7

i=1

by Theorem 3.17. Moreover, %(z, Az) — 2E[ZZ"] by the same result. Combining
with (6.7), we get:

A El[ZzZ*
B2 5 2oty "EZZ
Izl n?lp
which completes the proof after rearranging the inequality. ]
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Chapter 6. On Optima of Polynomials

We now show a direct application of Theorem 6.9 in the case p = 2. We design an optimal
low-degree algorithm by solving the right-hand side of Theorem 6.9:

sup 2E|ZZ*] .
Zespan(7T)
EZ%<1

Since J forms an orthogonal basis under the inner product defined by E, this reduces to
selecting a linear combination of trees whose squared coefficients sum to 1, in order to
maximize the correlation between Z and Z*.

Remark 6.10. For p = 2, our method is an asymptotic variant of the Randomized Krylov
Method [Tro20, §2.4], in the sense that we will select an optimal iterate in the span of
{1,A1,...,A*1,.. .} (i, the span of all path diagrams). In particular, one can think of The-
orem 6.9 as a generalization of Krylov subspace methods beyond the unconstrained setting.

6.2.2. AMP power iteration

A natural candidate for optimizing this objective is illustrated in Figure 6.1:

©

@
X =@+ +O0+ ]+
@

Figure 6.1. The infinite sequence of path diagrams.

This corresponds to the asymptotic state of the AMP power iteration algorithm intro-
duced in Chapter 4:

-1

20=1, zm1=AZt—2-1, Xt= ) Zs.

s=0
More formally, for any T > 0, define X1 = ZtT:_Ol P;, where P; denotes the length-t path
diagram. Then X} = Y./, P;, so that

E[XrXf]=T-1, EX;=T.
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6.2. Optimization in the tree basis

Thus, the resulting value of the objective is

2B [XrXf] 1

Ex: 7 T
Note that this matches the guarantees of the algorithm from §6.1.1, although with a better
constant factor in front of 1/T.

Remark 6.11. The Chebychev polynomials of the second kind (U;);s satisfy the similar
recurrence Uy, 1(x) = 2xU;(x) — U;_1(x). Hence, we have z; = U;(A/2)1. This iteration
also appears in the numerical linear algebra literature as a Krylov subspace method for the
more general problem of computing the top eigenvalue of a general positive semidefinite
matrix in the absence of spectral gap [KW92, Tro20].

6.2.3. The optimal algorithm for spherical maximization

There is an even better algorithm achieving value 2 — O(T~?), as we show now.

Theorem 6.12. For any Z € span(7) supported on trees of depth at most T,
2E[ZZ7]
———,— S 2cos (
E Z2

Moreover, equality is achieved for

)
T+2)"

where P, denotes the length-t path diagram.

Note that a nonlinear iteration with asymptotic state Z* can be obtained by simply
changing the coefficients when recombining the iterates in AMP power iteration:

SIT
z20=1, z1=Az;—2z;_1, x;= sin (—) Zs .
t+1
s=0
Proof. We define a piece to be a sequence of trees (7y,..., ) such that 7,1 = 7" for all

1 < i < k. Decompose Z into a union of disjoint maximal pieces. Then observe that both
E [ZZ*] and E Z? decompose across pieces, so by an averaging argument, it suffices to
prove the upper bound for a single piece.
Now, suppose that Z = Z{;l ¢;7; for some coefficients c; € R, where 7, = 7/ forall i < k,
and k < T + 1. Then,
2E[ZZ"] 2 Zi:ll CiCit1 < (c, Bc)

EZ? >k lAut(zn)| 2 el

(6.8)
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where B is the adjacency matrix of the length-k path graph (B, ;11 = Bi+1; = 1 foralli < k,
and zeros elsewhere). The largest eigenvalue of B is 2 cos (/(k + 1)), attained with the
eigenvector ¢; = sin (iz/(k + 1)).

Finally, the inequality in (6.8) is tight when each 7; is the length-i path diagram, and the
objective is maximized when k = T + 1, which completes the proof. [l

6.3. Random optimization over the hypercube

While we are not able to describe the optimal asymptotic state in a similar way when p = oo
in Theorem 6.9, we give some interpretation of Montanari’s algorithm from [Mon19] in
the tree basis.

Montanari’s algorithm is a special type of AMP algorithm called iterative AMP (or
martingale AMP), which uses (4.7) with the functions

filwy, ... ,wp) =wp O up(Wy_y, ..., wp) (6.9)
for chosen functions u; : R — R applied componentwise, where ® denotes componentwise
multiplication. The candidate output of the algorithm is x1 = Zthl w Qui(wi,..., W) =

T
g fiwe, .. owp).

The special property of iterative AMP is that it sums up independent Gaussian vectors w;
scaled componentwise by the functions u;. The independence of the Gaussian vectors w;
is contained in the state evolution for AMP as follows.? By Theorem 4.10, the asymptotic
states Wy, Uy, X; of wy, uy, x; satisfy Uy = Wy = 1,

t
Us = te(Wies, ., Wo) s Wos = (UWD', Xi = ) UiW.
s=1

Claim 6.13. U; is in the span of trees in T with depth at most t — 1 and W; is in the span of
trees in & with depth exactlyt.

Proof of Claim 6.13. Arguing inductively, as componentwise functions do not increase the
depth, U; is in the span of trees from T of depth at most ¢ — 1. In the product U;W;, the trees
of depth t in W; cannot be cancelled by any trees of lower depth from U;. Therefore all trees
in U;W; and W,y = (U;W;)* have depth exactly t and t + 1 respectively, as needed. ]

Claim 6.13 provides a very clear explanation of where the independent Gaussians are
coming from: the W; have different depths, and Gaussian diagrams of different depths are
asymptotically independent Gaussian vectors.

*The algorithm of [Mon19] uses a non-polynomial f; which is not directly covered by our state evolution
proof. However, Ivkov and Schramm [IS24] prove that this AMP can be approximated by polynomial f;.

102



6.3. Random optimization over the hypercube

Optimality via state evolution. The objective value achieved by the iteration can also
be computed using state evolution. For the Sherrington—Kirkpatrick model, the objective
is maxye(-11}» ¥ ' Ax. The value achieved by the iteration is:

—xTAxT ZE [Xr (X5 +X7)] (Lemma 3.21)
=2E [XrX7] (Lemma 3.24)
T
=2 ) E[UW(U,W)"]
s,t=1
T
=2 ) B[UWiWou]
s,t=1
T
= Z E [U,W/] (Independence of the W;)
=2
T
= Z E[U]E [Wz] (Claim 6.13 and independence of the W})

~
Il
[\

This gives an asymptotic description of both the iterates and the objective value achieved
by the algorithm. The remaining key step used by [Mon19] is to observe that when the
number of steps T is taken large, the point x7 heuristically approaches a martingale process
dX; = U; dB; with the steps w; converging to the Brownian motion. This limit only holds
if we choose u, to satisfy E [U?| = 1so that E [W?| =E [U?] E [W?,] = E [W?2,] for all
t. In this limit, the function u;(w;_1,...,wq) is chosen in the best possible way so as to
maximize the objective value:

1
max 2/ E [U] dt
0

s.t. (Up)eefo] is progressively measurable w.r.t. a Brownian motion (B;);e[o,1]
E [Utz] =1forallt € [0,1]

1
/ Ut dBt € [—1,+1] a.s
0

This optimization problem is convex and dual to an “extended Parisi formula” for the
optimal value of the SK model [EMS21, §4]. The remaining important technical step is
to show that this program is well-posed, and that the maximizer of this program, which
can be written in terms of the solution to the Parisi PDE, is smooth enough that it can be
discretely approximated by the limit T — oo.
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6.4. Beyond random polynomials

Due to concentration of measure, the maxima of random polynomials typically concentrate
around deterministic values (their expectations) as n — oco. But what about arbitrary
(multilinear) polynomials? How small can their maximum value be, relative to the size of
their coefficients? In particular, how “unsatisfiable” can a 3-SAT formula be?

Motivated by this last question, we focus on optimization over the hypercube, and
measure the size of the coeflicients of a multilinear polynomial p using their #-norm:

Definition 6.14. Let p(x) = X.gc[, ¢s [ [;es xi be a multilinear polynomial. We define:

1/2

Iplly = > lesl . liplly = | > ¢
]

Sc[n Sc|n]

6.4.1. Quadratic polynomials

For quadratic polynomials, the following simple example provides an upper bound:
Example 6.15 (Max-CuT on the complete graph). Let p(x) = —% 2i1<ij<n XiXj. Then
Iplly

(x) < -
max X)) — = .
xe{—l,l}”p n n

This upper bound is tight in general, as the following one-sided anti-concentration
shows:

Fact 6.16 (Lemma 3.2 of [AGK04]). Let p: {—1,1}" — R be a degree-k polynomial such
that Ep = 0. Then,

lipll,
4.3k

x~{-1,1}"

Pr (p(x) > ) > Q(975).

In particular, for constant k, there always exists an assignment with value Q(||p||, - nki2y,

6.4.2. Cubic polynomials
For cubic polynomials, the best known upper bound is achieved by a random construction:

Example 6.17 (Pure 3-spin Ising model). Let c;jx Hid {-1,1} and define
p(x) = Z CijkXiXjXk -

1<i,jk<n

Then ||p||, = n*. Moreover, for any fixed x € {-1,1}", the standard deviation of p(x) is
©(n®?), so a union bound implies that the maximum of p over {—1,1}" is O(n?), which is

O(liplly /).
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6.4. Beyond random polynomials

For general cubic polynomials, the best-known lower bound in absolute value is given
by the following theorem, which is implicit in [DFKO06].

Theorem 6.18. Let p: {—1,1}" — R be a degree-k polynomial. There is an algorithm that
outputs x € {—1,1}" satisfying

p()] > 2700 3 \infip],
i=1

where Inf; [p] = Xs5; c2, when p(x) = Y5 csx®.

By Cauchy-Schwarz, this implies a lower bound of Q(||p||, /n) for the maximum in
absolute value of degree-3 polynomials. Note that this implies a similar lower bound when
maximizing homogeneous cubic polynomials, using the symmetry p(x) = —p(—x).

However, this leaves open the question of the best possible lower for non-homogeneous
cubic polynomials:

Problem 6.19 (Extremal value of degree-3 polynomials). Determine the scaling of the min-
imal possible maximum of multilinear degree-3 polynomials over the Boolean hypercube:

max Z g nxi,
xe{-1,1}"

Sc(n] ieS
[S|<3

where the coefficients satisfy ) |cs| < 1.

The best known lower bound is Q(n~3/2) by Fact 6.16, and the best known upper bound
is O(1/n) by Example 6.17.

A potential approach to Problem 6.19 would be to analyze constructions that adaptively
modify Example 6.17 by planting structured instances such as Example 6.15. However, the
author was unable to analyze these constructions rigorously.

6.4.3. A generic cubic optimization algorithm

We now describe a generic algorithm for maximizing homogeneous cubic polynomials
over the hypercube that simultaneously achieves: (1) nontrivial advantage over a random
assignment (in the sense of the previous subsection), and (2) a good approximation to the
maximum value of the polynomial.

For reasons explained in §8.1.3, we assume without loss of generality that the input is a
decoupled homogeneous cubic polynomial:

n

fry2) = > Tuxyz,

L,j,k=1
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where the 3-tensor T satisfies T;j; = 0 whenever i, j, k are not all distinct.

The algorithm is presented in Algorithm 1.

Algorithm 1 Generic homogeneous cubic optimization algorithm

1. Sample a random x ~ {-1,1}".

2. Solve the SDP relaxation of y" M(x)z, and apply Grothendieck rounding (Theo-
rem 8.9) to the matrix M(x) defined as

n
M(y)ij = Z Tgijx -
k=1

Let y and z be the resulting assignments.

3. Repeat steps 1-2 poly(n) times, and return the best solution (x, y, z).

While the original algorithm from [KN08] uses a reduction to computing the #;-diameter
of a convex body, we show that it is equivalent to Algorithm 1. We provide a self-contained
analysis that matches the guarantees of both [KN08] and [BMO*15]. This analysis will
serve as a starting point for our algorithms with certifiable guarantees in Chapter 8.

Proposition 6.20. The output (x,y, z) of Algorithm 1 satisfies with high probability:

T.x®7®Z) > Q

1
ogn). max (T,x®yQ® z)
n xy,ze{-1,1}"

The key lemma to prove Proposition 6.20 is the following anti-concentration inequality.

Lemma 6.21 (Lemma 3.2 of [KN08]). Foranyd € (0,1/2), there is a constant ¢(5) > 0 such
that for any a € R", if ey, ..., &, are i.i.d. {1} random variables, then

< dlogn c(9)
Pr [Zaig,- >/ - ~||a||1‘ >

i=1

A simple proof of this lemma can be derived from our derandomization argument in §8.5.

Proof of Proposition 6.20. Let x*,y*,z* € {£1}" be an optimal solution. First observe
that it is always optimal to set x] := sgn((T;, y* ® z*)), so that OPT = f(x*,y" z") =
1 (T, y* ® z%)|. Then, for any x € {£1}", the algorithm outputs (x,y, z) such that

f(xy.2) > Q1) -yzrg{g}nf(i y.z) > Q1) f(xy'.2").

106



6.4. Beyond random polynomials

However, by Lemma 6.21, with at least inverse polynomial probability, a random X satisfies

f(xy" 2% = ZE,-(T,-, Yy ®z")
i—1

logn < . .
>Q(1) /22 3 [Ty @ 2)
i=1
1
= Q(1) -4/ 222 opT.

Thus, by repeating poly(n) times, with high probability the algorithm outputs an assign-
ment that has value Q (\/ Log ") OPT. ]

Next, we show that this algorithm also always finds a +1-assignment with value matching
the guarantees we deduced from [DFKO06] in §6.4.2.
Proposition 6.22. The output (x,y, z) of Algorithm 1 satisfies with high probability:

_ T
(T,X®Yy®2) 2 | ”1.

Proof. Let y*(x), z*(x) be the maximizer of y" M(x)z. Further, denote by
n
z, = sgn (Z T,-jkfifj)
i,j=1
the optimal assignment given x. The analysis of Grothendieck rounding implies that
T,xy®z) > Q(1) (T,Lxy (x) ® 2" (x))
>Q(1) - T,xx®z2) .

Now, for every k € [n], by Fact 6.16 (applied to the degree-2 polynomial in x),

ZT,kax] E(Z lekxx]) (Z Uk)

1]1 i,j=1 i,j=1

This implies that with the optimal choice Z/,

E(T,70F Z (Z uk) o 1Tl ||T||1

i,j=1

Finally, (T, x ® x ® z’) is always bounded by ||T||;, so by Markov’s inequality, it exceeds
Q(||T||; /n) with probability Q(1/n). In particular, we get such an assignment with high
probability after repeating the experiment poly(n) times. This completes the proof. [
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In fact, the same proof shows that this algorithm always finds an assignment with value
T+ Q(%), in any 3-Xor formula in which every variable appears in at most D clauses,

matching the main result of [BMO*15].

6.5. Summary

In this chapter, we analyzed several algorithms for maximizing random quadratic polyno-
mials over the sphere, ranging from basic power iteration to optimally tuned AMP power
iteration. We started discussing the worst-case analog of the problem, and noted that it
remains open in the case of non-homogeneous cubic polynomials.
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CHAPTER 7.

The Second Eigenvalue of Random

Hypergraphs

In this chapter, we estimate the maximum of random and sparse polynomials of the form

n

f(x) = Z Tijrxixjxy (7.1)

ijk=1

whose coeflicients are independent mean-0 and variance-1, but their higher moments grow

with n. Such polynomials arise in the study of spectral certificates for random hypergraphs.

Our main contributions in this chapter (Theorems 7.3 and 7.4) are tight upper bounds

on (7.1) in the “ultra-sparse” regime where the average number of non-zero entries per row

of the tensor is 0(1). Our proof is based on a discretization scheme capturing the multiscale

sparsity of test vectors, reminiscent of ideas appearing in the study of Rademacher processes.
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The results in this chapter are unpublished. The author thanks Luca Trevisan for suggest-
ing to study this problem, and Kevin Lucca for discussions related to tensor concentration.
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7.1. Introduction

7.1. Introduction

We study the following generalization of the Erdés-Renyi random graph model to hyper-
graphs:

Definition 7.1. Fix t > 2 and let p = p(n) € [0,1]. The distribution 3;(n, p) over t-
uniform tensors T is defined as follows: for each i € (['tl]) independently, let T; = 1 with
probability p and T; = 0 otherwise; and set: T,;(;) = T; for every permutation o € &;. Finally,
let T; = 0 for every i whose coordinates are not all distinct.

We also consider the following notion of tensor norm:

Definition 7.2. For any t-uniform tensor T, define

t
IT|l, = max Z Tinxi(u) = max [(T,x®")|. (7.2)
ot usl

llxll=1 ; llxll;=1

When T is a symmetric tensor (ie., T; = T, for alli € [n]" and 0 € &), ||T|l, is
equivalent to the decoupled maximization problem (T,x; ® ... ® x;) over unit vectors
x1,...,x:." Such an equivalence holds for matrices, and can then be argued by induction
on t; see e.g. [FW95].

Our goal, anticipated in §1.3.2, is to understand for which scalings of p = p(n) does the
quantity ||T||, become noticeably larger than ||T — ET||,. When t = 2, this threshold can
be predicted by estimating the magnitude of the quadratic form of very dense test vectors
only [Tre17a]. Following this insight, for general ¢, we expect (T, 1%®)| to start growing
once p = Q(n"*/?), while |(T — ET, 1®!)| remains bounded until p ~ 1/n. This suggests a
natural threshold at p ~ n~*/2 for the Erd6s-Renyi model.

The main result of this chapter, established in §7.3, confirms this phase transition for
t=3:

Theorem 7.3. Suppose p(n) = O(n~'7¢) for some constant ¢ > 0. Let T ~ H3(n, p). Then,

ITllz = Q(pn"),
IT-ET|l2=0(1).

As argued in §1.3.2, this shows that 3-uniform Erdés-Renyi hypergraphs are quasirandom
once they have Q(n!®) hyperedges.

For more general ¢, we prove the following weaker bound in §7.2:

! This alternative definition is usually called the injective tensor norm.
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Theorem 7.4. Lett € {3,4}. Suppose that T ~ H,(n,p), where p < O(n"'7¢) for some
constant € > 0. Then, with high probability,

IT -ETI|, < Klog® o,
where K = K(¢) is a constant depending only on ¢, and

a3 = max |{(a, k) € [n]®: T =1 and Ty, = 1}| ,

i,je[n]

oy = max |{(k, ) € [n]*: Tyjie = 1}] .
i,j€[n]

7.1.1. From tensor norms to refutation

Before proceeding, we give a concrete motivation behind Theorem 7.3.

Refuting random Boolean formulas. Random #-SAT is the average-case analog of Prob-
lem 1.1. An instance on n variables and m clauses is generated by sampling m random
t-tuples of variables and adding them to the formula with uniformly random literals. With
high probability, such formulas are unsatisfiable once m/n exceeds a threshold depending
on t. On the algorithmic side, one can ask about the existence of efficient certificates of
unsatisfiability. A conjecture of Feige states that this problem exhibits a fundamental
statistical-computational gap, in that such certificates cannot be found in polynomial time
unless m is much larger than n [Fei02].

The state of the art is that for even ¢, efficient certificates of unsatisfiability are known
when m = Q(n'/?), while for odd ¢, prior work until recently required m = Q(n'/? -
polylog(n)) [AOW15]. These polylog terms are believed to be technical artifacts due to
difficulties arising with odd-order tensors. The intuition is that for even t, one can fit the
entries the tensor in a square matrix of dimension £ x £, but this idea does not generalize
naturally when ¢ is odd. Theorem 7.3 goes beyond these flattening-based methods.

Bounding large independent sets. Given a random #-SAT instance on n variables,
consider the following ¢t-uniform hypergraph:

1. Create 2n vertices, representing each variable and its negation.

2. For each clause, add a hyperedge corresponding to the assignment forbidden by that
clause.

A simple observation is that any satisfying assignment corresponds to an independent set of
size n in this hypergraph. However, random hypergraphs with more than n'/? hyperedges
do not typically have such large independent sets. Therefore, the size of the maximum
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7.1. Introduction

independent set of this graph can certify unsatisfiability of the formula. While it is not
efficiently computable, we proceed to further upper bound it by a spectral certificate.

Although there are small correlations between the hyperedges, we are going to assume
that the adjacency tensor of the constructed hypergraph is sufficiently close in distribution
to J(;(2n, p), so that Theorem 7.3 continues to hold. Similarly to the graph case, Apw (T) =
IT —ET]||, is a spectral certificate for the maximum independent set in T. Indeed, if S C [n]
is an independent set (i.e., T; = 0 for all i € S*) and x = 1g, then for T ~ H;(n, p),

(05T _pis
[ IS|3 '

Thus, the maximum independent set is bounded by ||T||§/ 3p"2/ 3. By Theorem 7.3, this
certificate rules out independent sets of size Q(n) when the number of hyperedges is
Q(n3/?), thereby certifying unsatisfiability of random formulas when m = Q(n*?). Notably,
this avoids any extra polylog losses compared to the flattening argument.

Theorem 7.3 does not directly resolve the algorithmic question of refuting random ¢-SAT
for odd t, because we do not know how well can ||T||, be approximated on sparse random
inputs (for dense inputs, the conjectured approximation ratio is polynomial in n). However,
we believe that the proof of Theorem 7.3 motivates the construction of tensor norms that
are (1) efficiently approximable, and (2) amenable to a multiscale union bound argument.
We note that the question of refuting random #-SAT instances with Q(n'’?) clauses for odd
t was recently resolved in [dT23] using a completely different spectral certificate.

7.1.2. Chaining and Rademacher processes

Both Theorems 7.3 and 7.4 are beyond the reach of standard techniques such as flatten-
ing, trace methods, or simple union bounds. Prior work on tensor concentration, such
as [BGJ25, Boe24], focuses on dense or moderately sparse tensors and yields bounds
that are too weak in our setting. Many previous results in random matrix theory rely on
discretization arguments, and we do not attempt to survey them here.

Our proof method is close in spirit to the method of chaining [Tal21]. A classical way to
approach the quantity E ||T — ET|| for a random tensor T ~ J3(n, p) is to start from its
symmetrized version

E |IT-ET| =< E E lle T (7.3)
T~3s(np) T~Hs(np) g~{-1,1}0"°

(See, e.g., [Ver18, Lemma 6.4.2] for a proof of this equivalence, which holds for random
vectors in general normed spaces.)
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Chapter 7. The Second Eigenvalue of Random Hypergraphs

Conditioned on T, the expectation E ||e © T|| is the supremum of a Rademacher process.
In this perspective, T acts as a fixed {0, 1}-sparsity pattern for the Rademacher tensor e©T.
One may then try to further upper bound this supremum by the supremum of an associated
Gaussian process via Talagrand’s comparison inequality,

E | leoT| < E | lgoT|. (7.4)
e~{-1,1}%" g~N(0,1)®"

The hope would be to control the right-hand side of (7.4) using the chaining machinery
of [Tal21] for Gaussian processes, obtaining an upper bound that depends only on com-
binatorial properties of T (that would be negligible with high probability when T is the
adjacency tensor of a sparse random Erdés-Renyi hypergraph). However, this strategy
fails: at the expected phase transition threshold, T has about n!> nonzero entries, and with
high probability at least one of the corresponding Gaussians is of order Q(+/log n), which
already spoils the desired O(1) bound.

Returning to (7.3), a more successful approach is to exploit that the supremum of a
Rademacher process can be entirely understood by combining Gaussian-process tools with
the trivial inequality |Zi eix,-| < ||x||; when € has +1 entries [Tal21, Chapter 5]. Recently,
Latata [Lat24] used this idea to prove bounds for the matrix analog of (7.3). The intermediate,
weaker estimate in [Lat24, §4] is based on an argument that is very similar to the one we
give in §7.2. Whether the construction of §7.3 can be used to extend the results of [Lat24]
from matrices to higher-order tensors remains a tantalizing open problem.

7.2. Lifting discrete to continuous test vectors

In this section, we prove Theorem 7.4. While not explicitly relying on chaining, our
argument is similarly based on discretizing and grouping together vectors with similar
properties. This section is inspired by the strategy of Bilu and Linial for the proof of their
converse of the expander mixing lemma [BL06]. We will see in §7.3 that a more careful
grouping and union bound argument yields the optimal answer for 3-uniform tensors.

7.2.1. Preliminaries

We first prove that it suffices to bound the multilinear form over vectors whose coordinates
are discretized:

Lemma 7.5. Lett > 2 and T be a t-uniform tensor such that T; = 0 for all t-tuple i that
contains some element multiple times. Then:

[(T.x*)]

C o (T®)]
max ————— < 2 - max ——-———
x€Rn ||x||2 xeP ||x||2
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7.2. Lifting discrete to continuous test vectors

where P := ({£27" :i > 1} U {0})" is the set of n-dimensional vectors whose nonzero entries
are negative powers of two.

Proof. The proof is a simple extension of an argument of [BL06]. Let x € R" be normalized
so that ||x||c < % Then, for any i € [n], there exists t; € [1,00], & € {—1,1},and §; € [0,1)
such that x; = (1 + §;)27". Now, set, independently for every i,

_ 2711 with probability &;
Xi = .
g27h with probability 1 — §;

x? < 4x?, and EX; = x; by construction. Since x — (T, x®') is

—=®t
X

Clearly, we always have
multilinear by assumption, we get E(T,x°') = (T, x®"), and in particular there exists a
test vector in P whose normalized multilinear form is at least a 47!/2 = 27* fraction of the

unconstrained optimum. [

Next, we prove that a boun/ over {0, 1}-valued test vectors can be lifted to a bound over
{-1,0, 1}-valued test vectors up to a constant depending only on ¢:

Lemma 7.6. Lett > 2 and T be a t-uniform tensor. Then,

KT, x1 ®...Q x;)| <o, KT, x1 ®...Q x;)|

<
xpoxe{-1013"  ||xq|l2 ... ||xe]|2 xpaxee{013 ||xq|la .. ||t ]]2

Proof. Write any x € {-1,0,1}" as x = x* — x~ for x",x~ € {0,1}". By the triangle
inequality,

(T, x1®...® x;)| = |<T, (x]-x])®...® (x;'—xt_)>|

< Z ‘<T,x‘f1 ®...®xf’>

Se{—+}k

<2 max KT, x1®...Q x;:)]
PR (NS L | R | PO | A | P

This concludes the proof. ]

7.2.2. Tensors of even arity

In this subsection, we prove:

Theorem 7.7. Let ¢ > 0. Suppose T ~ Hy(n,p) withp < O(n~'7¢). Then, with high
probability,
IT-ET|,; < Klog®«a,

where K is a constant depending only on ¢, and a = maxi<; j<n |{(k, ) € [n]® : Tijke = 1}|
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Chapter 7. The Second Eigenvalue of Random Hypergraphs

This shows that random Erdés-Renyi hypergraphs exhibit a spectral gap whenever
IT|l, > log® B, which happens when p > (loglogn)? - n=2. This is a polyloglog-factor
away from the predicted phase transition threshold.

To prove Theorem 7.7, we start by bounding the decoupled form over all {0, 1}-valued
test vectors.

Lemma 7.8. LetT and e > 0 be as Theorem 7.7. Then with high probability,

KT-ET,xQy®z®u)]
max =X ’
xyzucfo}r  [lx|l2llyll2llzll2]ull2

for some constant K depending only on ¢.

Proof. Let Egpeq (0 < a < b < ¢ < d < n) be the event that there exist x,y,z,u € {0,1}"
such that x (resp. y, z, u) has exactly a nonzero entries (resp. b, ¢, d) and

KT -ET,xQy®z®u)| >KVabecd =K -P.

where, to simplify notations, we define P := P(a, b, c,d) = Vabcd. Our goal is to show that
Uap.cd Eabea occurs only with negligible probability. We proceed by grouping together
E.pcq based on the values of a < b < ¢ < d.

Large P. First, suppose that P > n. Then, by Bernstein inequality applied with variance
proxy bounded by pabcd = pP? and uniform bound 1 on the summands,

p? K? 1 3P
_logPr(Eabcd) > — mi ( )

2
—_— 2 min | —, —
2 pP2+3iKP 4 p K

Since by assumption we have 1/p = Q(n'**) and P > n, whenever K is large enough, this
overcounts the number of choices for the support of x, y, z, u, which is clearly at most 24n.
Therefore, we can take a union bound to show that none of the E.4 satisfying P > n
occurs, with probability at least 1 — n™1°,

Therefore, from now on we assume P < n. In this regime, the contribution from the
expectation of T is negligible:

Claim 7.9. For any x,y,z,u € {0, 1}" with respectively a, b, c,d nonzero entries,
(ET,x®y®z®u) < pP*.

When P < n, we have pP* < npP < P, so it suffices to upper bound

K
Pr (T,x®y®z®u)>E-P :
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7.2. Lifting discrete to continuous test vectors

Large d. Now, suppose that a+b +c+d > Vabced = P. In particular, we have 4d > P.

By Claim 7.9, if Egpcq occurs, then we must have (T, x @ y ® z ® u) > % - P for some

x, Yy, z,u with a, b, ¢, d nonzero entries. By averaging, it must be that for some i, j, k € [n],

_Kd _K

1 K
—P=—>
2 2P 8

n n
Z Tijke 2 Z Tijrixiyjziue > e
=1 =1 abce

b

using the identity abc = %2 and the assumption 4d > P. Finally, we use:

Claim 7.10. For any C > 0, there exists K(C) > 0 such that max; j ke[n] 2y— Lijke < K(C)
with probability at least 1 — n=C.

Therefore, the probability that any E,p.4 satisfying a + b + ¢ +d > P occurs is at most

n~1% uniformly over all such a, b, c, d.

Remaining case. Finally, suppose that a + b + ¢+ d < P < n. In this regime, the number
of choices for x, y, z, u is at most

HHN[AR

On the other hand, for any fixed x,y,z,u, (T,x ® y ® z ® u) is the sum of independent
Bernoulli random variables with mean pP?, so by the multiplicative version of the Chernoff
bound (see, e.g., Claim 7.16 below),

1 K
Pr(Egpeq) < n®0+ . exp (_EKP log (p_P)) . (7.5)

(This expansion is valid since pﬁp > 4 in our regime of parameters.)

The quantity in the exponential in (7.5) exceeds 10Plogn > 10(a + b + ¢ + d) log n when
K is a large enough constant depending on ¢, so we conclude that no E,;.4 satistying the

assumption can occur, with probability 1 — n™1°,

Conclusion. Our three cases cover all regimes for a, b, c, d. It remains to take a union
bound over the n* possible values for a, b, ¢, d. Therefore, the statement holds with high
probability, which concludes the proof. ]

Our next lemma lifts the bound from {0, 1}-valued vectors to any vectors whose entries
are negative powers of 2:
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Chapter 7. The Second Eigenvalue of Random Hypergraphs

Lemma 7.11. Suppose that T ~ Hy(n, p), where p < O(n"'"¢) for some constant ¢ > 0.
Then with high probability,

T-ET, x®
max'< * >| sKlogza,
x€P ||x||‘2L

where P is defined in Lemma 7.5, K = K(¢) is the constant from Lemma 7.8, and

a —max|{(k{’)€[] -Tijkle}|-

iLje(n

Proof. Let x € P, decomposed so that x = Y5, 27'x) where x](.i) = +1if x; = £27°

and 0 otherwise. If we denote by s; the number of nonzero entries in x it follows that
|x||2 = Y; 27%s;. We can assume without loss of generality that ||x||, = 1. First,

n
(T-ET,x®)| < > 27T -ET,x? @ x¥ @ x® @ x0)|.
i,j.k,f=1

Fix some integer parameter y > 1 to be fixed later.

e LetJ:={i<j<k<{f:k+f¢<i+j+y} ByLemmas7.6and 7.3, it holds, with high
probablhty,

2~ (0 1T _ET, xV @ xU) @ x® @ x(V)] < K\/2_2i3i2_2j3j2_2k3k2_2€3t’

ZK( Is; —213] 2_2k3k2_2[3g) )

Plugging into our original left-hand side, we obtain

n

Z 2~ (k01T _ET, W @ xU) @ x @ x(9)| < 4K Z 274 s

(i,).k.€)€] (i,j.k,1) €T
n
< 4K Z 2_21_2J5i5‘j Z 1
L,j=1 i+j<k+0<i+j+y
< 4Ky?,

using the normalization }; 27%s; = 1.
« Now, consider the indices J :={i < j < k< ¢:k+¢>i+j+y}. Foralli j e [n], by
the triangle inequality we have

n n
Z T -ET,x" @ x¥ @ x® @ x| < (T, |x?| ® |xV| ® Z Ix®] @ |xO])
k,e=1 k.e=1
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7.2. Lifting discrete to continuous test vectors
n
< $;$j max Z Tijke = sisja,
bielnl 4

where we are using that the nonzero entries of x'¥) and x'¥) are disjoint. Plugging
back in,

Z 2—(i+j+k+f)|<T _ ET,x(i) Q x) ® x(F) ® x(l’)>|

(i.jk.t)ed
< Z 2@+ T _BT,x® @ x) @ x%) @ x(0)]
(i.jk.0)ed
< a2’ Z 22 gis = a2V
i,j=1

Combining both cases and picking y = log @, we obtain
(T —ET,x*)| < 4Ky* + a2V < Klog®a,
as desired. []

Proof of Theorem 7.7. The proof directly follows from combining Lemmas 7.5 and 7.11. [

7.2.3. Generalization to odd-arity tensors

We briefly explain how to generalize the strategy of §7.2.2 to odd-arity tensors, focusing
on t = 3. We will prove a much better bound in the next section.

Theorem 7.12. Suppose T ~ Hs(n, p) where p < O(n"17¢) for some constant ¢ > 0. Then

with high probability,
IT-ET|; < Klog?«

where K = K(¢) is a constant depending only on ¢, and

« ‘= max |(a, k, ) : Toe = 1 and Tyjp = 1}| )

1<i,j<n

We only sketch the proof of Theorem 7.12, as it is very similar to §7.2.2. The main
difference is that we start by applying the “Cauchy-Schwarz trick” (which is a classical idea
for refuting random k-Xor instances for odd k). Let T = T — ET be the centered tensor.
For any x € 8",

2

Z E]kxixjxk < Z Ti,]l,kl Ti,]'z,k2xj1 X jo Xk Xky

1<i,j,k<n lgiajl’jZ)kbkzgn
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Chapter 7. The Second Eigenvalue of Random Hypergraphs

Let Mjj ke == 20y ikri:jgr (note that the other way to flatten the tensor would give a very
poor upper bound). We bound (x%%)T Mx®? for any x € 8""!. First, observe that the
f1-norm of the row of M corresponding to the tuple (i, j) is

Z Tikri:j[r-

1<k, t,r<n

For p = n™!°, the distribution of this random variable is close to Poisson(1). Hence the
maximum ¢;-norm of a row of M is about log n/loglog n. This quantity will play the role
of « in the odd-arity case.

The proof of Theorem 7.12 proceeds by first establishing that whenever p < 1/n,

n
i,jke=1 Mij,kt’xiyjzku(

xyzuc{oyr  [lx|l2llyllzllzll2]lull:

<0(1),

using a case analysis similar to the previous subsection. Then, for any x = 3, (927 with
x € {-1,0,1}", we write

(x®2)TMx®2 — Z o= (i+j+k+0) (x(i) ® x(j))TM(x(k) ® x(l’)) _
i,j,k, 20

A similar argument to the previous subsection shows that the contribution of indices
i < j<k<twithk+¢ < i+j+y tothe quadratic form is at most O(y?), and the
contribution of remaining indices is at most O(«), where « is the maximal ¢;-norm of a
row of M. Setting y = log a, we get a log” & upper bound on the second eigenvalue of T,
which is (loglog n)? for a random 3-uniform hypergraph with n'> hyperedges.

7.3. A direct multiscale union bound

In this final section, we prove Theorem 7.3. The lower bound comes from the all ones
test vector that achieves cubic form pn'->. We now focus on establishing the upper bound.
We fix T to be a random 3-tensor satisfying the assumptions of Theorem 7.3. Our proof
strategy borrows ideas from Kahn and Szemerédi, and Feige and Ofek [FKS89, FO05].

7.3.1. Preliminaries

Notation 7.13. Given A,B,C C [n] and atensor T € R“a, we let

T(A,B,C) = Z Z Z Tope .

acA beB ceC
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7.3. A direct multiscale union bound

To bound the norm of T — ET, we start by discretizing test vectors into negative powers
of 2. By Lemma 7.5, this can be done at the cost of a constant factor only. That is, we focus
from now on on bounding the right-hand side of:

Lemma 7.14.

T-ET|, < 2~ () (T _ET)(A;, B:,Cy),
IT~ETI, %%O (T - ET)(A; B, Ci)

where the maximum runs over all 3-tuples of partitions A = (A;)iz0, B = (Bj)j»0, C =
(Ciso of [n] satisfying 350 14:127% = 3150 |Bj1274 = s [Ckl27%F = 1.

Definition 7.15. We say that a partition A = (A;)is0 is normalized if 3,5, 27%|A;] = 1.
We will use repeatedly the following version of Chernoff bounds.

Claim 7.16. Let Xy, ..., X, be independent Bernoulli random variables and let

n
1= ZPr(Xi =1).
i=1

Then forallt > 4,

S

1
Pr X; > tp| < e73tHlost

i=1

7.3.2. Technical lemmas

Let § > 0 to be fixed later.

Lemma 7.17 (Dense test vectors). Let S; = {(i, j, k) : 27(0+/+0) < %} Then with probability
1—e (M it holds for all normalized partitions A, B, C:

> 2T —ET)(A;, B}, G) = O(1).
(i,j,k)ESl

Proof. First, we keep only indices i, j, k such that 271 27J g7k > # (clearly, the sum over
the other indices can contribute at most O(1)). In particular, we only need to take a union
bound against < (logn)® - 23" = 9 elements.

Up to the symmetries, the left-hand side is a sum of independent random variables

bounded by =, with variance proxy:

Z o= (2i+2j+2K) Z Z Z E [(Tabc _p)z] <p.

Lj;k}() aeAi bEBj ceCk
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Chapter 7. The Second Eigenvalue of Random Hypergraphs

Therefore, by Bernstein inequality, the left-hand side in the statement of the lemma exceeds
t with probability at most min(e ",
large enough constants, we get that it is O(1) with probability at least 1 — e~ We
conclude by taking a union bound. [

2 . .
e~Ct'/P) for some constant C > 0. Since p < % using

Claim 7.18 (Target union bound). Suppose that for any fixed sets A, B, C C [n], we know that
T(A, B,C) < f(JA],|B|,|C|) with probability at least 1—n~*UAHBHCD  Then with probability

1- poTl(n)’ T(A,B,C) < f(|Al,|B|,|Cl|) holds simultaneously for every A, B,C C [n].

Proof. We first take a union bound over all A, B,C of fixed size a,b,c > 0 to get that
T(A,B,C) < f(lA],|B],|C|) for all sets A, B, C of size a, b, ¢ simultaneously with probability
1-((D)(3) (Z))_Q(l). By another union bound, this then holds for all sets A, B,C C [n] with

probability 1 — []

_ 1
poly(n)°

Lemma 7.19 (Case |A;| - |Bj| > n). Let

e 1 |Ail|B;||Ck|
Sy = S5(A,B,C) = {(i,j, k) : 27k 5 2 > nlogn
2= n’ max(|4;], 1B}, ICel) &

Then with probability at least 1 — m, it holds for all normalized partitions A, B, C that
D, 2RI -ET)(4,B,,C) = 0(1).
(i’j’k)ESZ
: |Ai 1B Ck| ~ By A1 1G]
Proof. By Claim 7.16, (T-ET)(A;, Bj, Ct) $ ——— holds with probability 1-e n

for some constant C > 0. Now if (i, j,k) € S,, we know that AMBIIG o at least logn -
max(|A;|, |Bj|, |Ck|). Hence, by Claim 7.18, we get that with probability 1 — m,
S Aoy < Y gt AIBIG
(i,jF)€S; (ijF)€S; "
< ) 2 @O 4| B |G
i,j,k>0
=1. ]

Lemma 7.20 (Bound on the expectation). For any normalized partitions A, B, C,

2~ () (ET)(A;, Bj,C) = O(1).
1.k >0:|A;||B;||Ci| <n2+e

Proof. This equals

n—(l+6) Z 2—(l+]+k)|Al||B]||Ck| < n‘% Z 2—(i+j+k) '|Al||BJ||Ck| — O(l),

i,j,k=0 i,j,k>0
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7.3. A direct multiscale union bound

where the last inequality follows from Cauchy-Schwarz and the normalization of A, B, C.

[

Lemma 7.21 (Irregular sizes). Let

53 = 53(A, Ba C) = {(l:]: k) :max(i, J) < k’ max(lAiL |B]|) > |Ck|:
. . -6

| AillB;Ci <" }.
max (|4, |B;l)

it holds for all normalized partitions A, B, C that

Then with probability at least 1 — poly(n),

> 27 WIT(A, B, G = 0(1).

(i.j.k)€Ss

Proof. By a Chernoff bound, we have T(A;, Bj, Cx) = O(max(|A;|, |B;|)) with probability at
least 1 — p~?(V'max(4ibBi) hecause the second assumption ensures that

max(|A;|, |B;

( (A J|))  otton.
|Ail|B;||Clp
Therefore, by Claim 7.18, we have with probability 1 — poly(n) that
>0 2 T(A B C) < Y 2 max(lAL 1B Y 2 <.
(i,j,k)€S; i,j20 k>max(i,j)

This concludes the proof. []

Lemma 7.22 (Case |A;| < n%%). Let

1
Se = S6(A,B,C) = {i,j,k : k > max(i, j), min(|A;|, |Bj|) < —} )
pnl+5

Then with probability at least 1 — it holds for all normalized partitions A, B, C that

oL
2~ H*RT (A, B, Cr) = O(1).
(i,j,k)656

Proof. The argument is symmetric in i and j, so we assume without loss of generality that
|A;| < |Bj|. Since |A;||Bj|pn < |B;|, by Claim 7.16 we have T(A;, B}, [n]) = O(|B,|) with

probability 1 — n=?UBiD)_ Then, by Claim 7.18, with probability 1 — Wl(n)’
Z 2_(i+j+k)T(Aj, B]’ Ck) S Z 2—(i+j) Z Z_kT(Ai, B], Ck)
(i,j,K)€S6 i,j>0 k>j
< Y 2727T(A;, B, [n])
i,j>0
=0(1).
This concludes the proof. ]
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Lemma 7.23 (Case |Cx| < |A;| - |Bj|). Let
Sy = {(i. j.k) : max(JA;], [B;]) < |Cil < (JA||B;)' ™, 4Al|B;| < p™'} .

Then with probability at least 1 — it holds for all normalized partitions A, B, C that

1
poly(n)’

Z 2_(i+j+k)T(Ai,Bj, Cr) = 0(1).
(i,j.k)€Ss

Proof. By Claim 7.16, we have T (A;, Bj, Cx) = O(|Cx|) with probability 1 — n~RUCD (this
works provided that 4|A;||B;| < p~'). Moreover, if this holds, since 2% > |A;|, 2% > |Bj],
2%k > |Cl:

3 T, BLC) s Y 2P (AIB G T = 0(1).
(i,j.k)€Ss i,j,k=0

and we conclude by Claim 7.18. [l

Lemma 7.24 (Case |Cy| > |Bj|). Let

S5 = S5(A,B,C) = {(i, j.k) : j < k,4min(|A;], |B;]) < n*’logn,

|Ci| > max(n®, |A;|*°, |Bj|1+5)} .

Then with probability at least 1 — m, it holds for all normalized partitions A, B, C that

Z 2~ (T (A, B;,Cr) = 0(1).
(i1 JESs

Proof. Imagine that |A;| < |Bj| to simplify (the argument will be symmetric by switching
the roles of i and j). By Claim 7.16, we have T(A;, B, [n]) = O(logn - |B;|) with probability
1 — n~!Bil (note that 4|A;||B j|n_1/ 2 < |Bj|log n holds by assumption). If this holds, then

5 52
using 27F < |Ck|72 < |B;|7271 - n™T, we get

8 o2
4

Z 2~ (H*RT (A, B, Cp) < Z 2" )T (A, B), [n])|Bj| 2% -0
(i.j.k)€Ss i,j>0
< Y 2By as
i,]Z>0
<1,

where the last inequality follows from |B;| < 2%. The result then follows from Claim 7.18.
]
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7.3.3. Putting everything together: proof of Theorem 7.3

Without loss of generality we treat the case of i, j, k satisfying 0 < i < j < k. We prove

that (i, j, k) necessarily belongs to S; U S, U S3 U S4 U S5 U Sg.
1

Suppose that the assumptions of Lemma 7.17 do not apply. Then 27(#/*%) > 1 Now
suppose that the assumptions of Lemma 7.19 do not apply. Then,
Ail|B;l|C
A1 1Ck < nlogn. (7.6)
max(|A;], |Bjl, |Ck|)
Now, suppose that the assumptions of Lemma 7.21 do not apply. Then by (7.6),
|Ci| > max(|Ai, [Bj]) . (7.7)

In particular, by Lemma 7.20, the contribution of the expectation is negligible in this regime.
So we reduce to bounding T instead of T — ET. Next, suppose that the assumptions of
Lemma 7.23 do not apply. Then by (7.6) and (7.7),

ICil > (|AilIB;D'°. (7.8)

Next, suppose that the assumptions of Lemma 7.24 do not apply. Then,
Cel <n® or |Gyl < max(|Ayl, |B;)"* (7.9)

1

In the first case, if we pick § < ¢€/2, it must be by (7.7) that |A;| < —, so Lemma 7.22

pn1+5 >
applies. In the second case, after combining with (7.8), we get

1-8
max (|Ail, |B;]) < (JAil|Bj]) =,
so if we pick § to be a small enough constant, then both |A;| and |B;| have to be O(n®), and
Lemma 7.22 applies again with the choice § = ¢/2.

7.4. Summary

We proved a tight bound on the Friedman-Wigderson second eigenvalue of sparse Erdds-
Renyi 3-uniform hypergraphs. Our argument avoids a generic chaining construction in
favor of a carefully designed union bound.
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CHAPTER 8.

Certifiable Approximation for
Polynomial Optimization

In this chapter, we introduce new approximation algorithms for the problem of maxi-

mizing an arbitrary homogeneous, multilinear, cubic polynomial

n

f(x) = Z CijkXiXjXk ,

i,j,k=1
i,j,k distinct

over x € 8" ! or x € {~1,1}". Our algorithms have several features:

1.
2.
3.

They have certifiable approximation guarantees, in the sense of §1.2.4.

They come with an entire tradeoff between time and approximation.

Already in the polynomial-time regime, they improve over the approximation guar-

antees of the prior work [BGG*17].

They are based on a new technique for rounding higher-degree sum-of-squares

relaxations that we introduce.

We give an application of our results to the design of improved approximation algorithms
for Max-3-SAT (Problem 1.1).
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8.1. Preliminaries

8.1. Preliminaries

8.1.1. Sum-of-squares relaxations

We refer the reader to the monograph [FKP19] and the lecture notes [BS16] for a detailed
exposition of the sum-of-squares method and its usage in algorithm design.

A degree-{’ pseudo-distribution p over variables xy, xs, ..., X, corresponds to a linear
operator E that maps polynomials of degree < £ to real numbers and satisfies E 1=1
and E [p? ] 0 for every polynomial p(x1, Xz, ..., X») of degree < £/2. We say that such
a pseudo -distribution satisfies the hypercube constraints if E ulpx?] = E [p] for every
polynomial p of degree < £ — 2 and every i € [n]. We say that such a pseudo- dlstrlbutlon
satisfies the unit sphere constraints if E JLllx|l5p] = E,[p] for every p of degree < £ — 2.

Given a polynomial p (with the #;-norm of the coefficients being ||p||1) over x1, x2, . . ., Xp,
a pseudo-distribution of degree ¢ over the unit sphere or the hypercube that maximizes
p within an additive ¢||p||; error can be found in time n°® polylog(n/e) via the ellipsoid
method.

Reweighting. Given a pseudo-distribution p over the unit sphere or the hypercube,
a reweighting of p by a sum-of-squares polynomial q satisfying Ey[q] > 0 is a pseudo-
distribution y’ that maps any polynomial p to Eyr [p] = Ey [pql/ Ey [q]. For any p of degree
¢ and q of degree r < ¢, i/ is a pseudo-distribution of degree at least £ — r. Furthermore, if y
satisfies the unit sphere (or the hypercube) constraints then so does i’ aslong asr < £ — 2.

Sum-of-squares proofs. Let fi, fo,..., f,, and g be multivariate polynomials in x. A
sum-of-squares proof that the constraints {f; > 0,..., f,, > 0} imply g > 0 consists of
sum-of-squares polynomials (ps)sc[m] such that g = Xigcm) Ps [lics fi- The degree of such
a sum-of-squares proof equals the maximum of the degree of ps [],cs fi over all S appearing
in the sum above. We write {f; > 0, Vi € [m]} }% {g > 0} where t is the degree of the
sum-of-squares proof.

We recall the following connection between SoS proofs and pseudo-distributions:

Fact 8.1. Suppose {f; > 0,Vi € [m]} }* {g > 0} for some polynomlalsf and g. Let j1 be a
pseudo-distribution of degree > t satzsfylng {fi = 0}ie[m]- Then, E ulgl >

We next state some standard facts (see [FKP19] for references).

Fact 8.2 (SoS generalized triangle inequality). Let k € N and x = (xy,...,x,) be indetermi-

nates.
k

{x; >0, Vi € [n]} == ( Z

i=1
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Moreover, if k is even, then
n k n
X15-.5Xn 1 1 k
P - E xXi| < — E X;
ni= ni=

Note that the k = 2 case is the SoS version of the Cauchy-Schwarz inequality for vectors.

Fact 8.3 (Cauchy-Schwarz for pseudo-distributions). Let f, g be polynomials of degree at
most d in indeterminate x. Then, for any degree-2d pseudo-distribution y over x, we have

E(fq] < \/E[fz]\/E[gz] .
T T T

Fact 8.4 (Holder’s inequality for pseudo-distributions). Let f, g be polynomials of degree at
most d in indeterminate x, and fix any event € N. Then, for any degree-td pseudo-distribution
1 over x, we have

Bl ] < (E[ff]) t (E[g’f])' .
p p

u

Furthermore, for anyt € N and any degree-2td pseudo-distribution u, we have EH [th—z] <

AT

8.1.2. Roundings for quadratic polynomial optimization

The problem of worst-case quadratic polynomial optimization with certifiable guarantees
was conjecturally settled 20 years ago in a series of work that used semidefinite program-
ming to design approximation algorithms. The starting point was the 0.878-approximation
algorithm of Goemans and Williamson [GW95] for Max-CuT. The algorithm of Goemans
and Williamson is based on rounding the degree-2 sum-of-squares relaxation of Max-Cut
using random hyperplane rounding.

Example 8.5 (Random hyperplane rounding). We identify vertex cuts with vectors in
{—1,1}" in the natural way. The fraction of edges cut by x € {-1,1}" in a graph G = (V,E)
can be expressed as

folx)=7 E (xu- x)° . (8.1)

1
4 {up)
Let u be any degree-2 pseudo-distribution on x € {-1,1}". Since Ey fo(x) = Ey fo(—x),

up to symmetrizing the pseudo-distribution, we assume without loss of generality that
E, x = 0. Random hyperplane rounding proceeds by:
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1. First, drawing g ~ N(0, Eu xx ") matching the first two moments of p.

2. Then, letting x; := sign(g;) for all i € [n].
The analysis is based on the following inequality on two-dimensional Gaussians: for any
jointly Gaussian random variables (g, h),

E [ (sign(g)  sign(h))?] > Kaw - E [(9— 0]
where Kgw =~ 0.878.

Random hyperplane rounding and its generalization RPR?, i.e., randomized projection
followed by randomized rounding [FL06], are the main rounding technique for quadratic
polynomial optimization. We proceed to describe the best-known rounding algorithms for
maximizing quadratic polynomials with arbitrary coefficients.

Spherical optimization. Maximizing a degree-2 polynomial over the sphere is equiva-
lent to computing a maximal eigenvalue, which can be done in polynomial time without
loss in the approximation ratio. This can of course be captured by a rounding algorithm of
degree-2 sum-of-squares.

Lemma 8.6 (Lossless rounding on the unit sphere). Given any degree-2 pseudo-distribution
poverx € 8" ! and M € R™", there is an algorithm that outputs x € 8"~! such that

(x, M%) > E (x, Mx) .
u

Proof. Let X = E,, [xx "] and write the eigendecomposition X = Y7 Ao, where A; > 0
and v; € 8" ! for all i € [n]. Since  is a pseudo-distribution over the unit sphere, we have

tr(X) = Zn:/li =1,
i=1

s0 {A;}ic[n] defines a valid probability distribution. Now sample X = v; with probability
for all i € [n]. Then,

E (X, M%) = > i (0, Mo;) = (X, M) = B (x, Mx) .
i=1 a
In particular, one of v, ..., v, must have quadratic form at least Eu (x, Mx). ]
Hypercube optimization. The analog rounding algorithm for maximizing degree-2

polynomial on the hypercube is due to Charikar and Wirth [CW04]. Its approximation ratio
is O(log n), and there is evidence that this is best possible in polynomial time [ABH"05].
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Theorem 8.7 (Charikar-Wirth rounding [CWO04]). For any T > 0, given any degree-2
pseudo-distribution p over x € {+1}", there is a polynomial-time sampleable distribution D
supported on {£1}" such that for any matrix M € R™" with zero diagonal entries,

— 1 = 2
EINED@C,Mx)?ﬁ-IE(x,Mx)—Se 2 ;'MU"
In particular, if i is an optimal pseudo-distribution for the degree-2 SoS relaxation of

max (x, Mx) ,
xe{x1}"

then by picking T = ©(4/logn),

- max {(x, Mx) .

E (x,Mx) > Q ( )
*~D logn) xe{z1)n

The rounding in the proof of Theorem 8.7 is a truncated hyperplane rounding. First,
sample a Gaussian g with first and second moments matching the corresponding pseudo-
moments of y, and set

~ % if|gi| <T
Xi=11 lfg, >T
-1 lfg, <T

Note that x has entries in [—1, 1] instead of {—1, 1}, but applying a simple independent
rounding in every coordinate preserves the value of any multilinear polynomial in expec-
tation. The idea of the analysis is that when T ~ 4/log n, all contribution comes from the
untruncated variables, and the degree-2 moments in untruncated variables are preserved
up to a 1/T? scaling factor.

Grothendieck rounding. While the O(logn)-loss in Theorem 8.7 is believed to be
tight, there is one important special case in which it is possible to get a constant-factor
approximation: for decoupled polynomials.

Definition 8.8 (Decoupled polynomial). A homogeneous polynomial p(x) of degree d in
n variables x = (x1, ..., x,) is decoupled if there exists a partition Sy, ..., Sy of [n] such that

d
p(x) = Z Cinxij-

ieSlx...de j=1

for some coefficients {c;}ics,x...xs,-
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For example, decoupled polynomials of degree-2 have the bipartite form

p(X1, e X Yty e Ym) = chi’jxiyj' (8.2)

i=1 j=1

For maximizing decoupled quadratic polynomials over the hypercube, a rounding based on
the celebrated Grothendieck inequality achieves constant-factor approximation.

Theorem 8.9 (Grothendieck rounding [ANO06]). There is a rounding algorithm that, given
any degree-2 pseudo-distribution u over x,y € {+1}" and M € R™", outputs x,y € {+1}"
such that
— 1 =
(x, My) > —-E(x, My) ,
Kg n

where Kg < 1.783 is the Grothendieck constant.

8.1.3. Decoupling

The reason why the decoupling structure helps for polynomial optimization is not too
mysterious. Suppose we want to maximize a polynomial of the form (8.2) over {-1,1}". A
natural strategy would be to separately optimize over the x- and y-variables. In fact, given
an assignment of the x variables, the optimization problem over y can be solved in closed

y;f = sign (Z ci’jx,-)

i=1

form, namely

achieving value
n

plry’) =)

i=1

m

Ci,jXi| -

j=1
This kind of idea generalizes to higher-degree decoupled polynomials as well.

Following this intuition, a standard technique for polynomial optimization problems
is decoupling, which relates the optimum of (T, x®*) (the “coupled” polynomial) to the
optimum of (T, x ® y ® z) (the “decoupled” polynomial). Something quite magical happens
for maximizing degree-3 polynomials over the n-dimensional hypercube or the unit sphere:
the coupled and decoupled maximization problems are equivalent up to a constant factor.

Lemma 8.10 (Decoupling [KN08, HLZ10]). Let Q be either {—1,1}" or 8" 1. Let f be a
multilinear homogeneous degree-3 polynomial in n variables,

n

f(x) = Z T jpeXiX j X

L,j.k=1
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(where T is a symmetric 3-tensor). Consider also the decoupled version of f:

n

flx,y.2) = Z Tijkxiy;zx -

Lj.k=1

Then,
2

max f(x) 2 — - max ~x, . Z) .
x€Q f(x) = 9 x,y,zle( y.2)

In §8.6.2, we prove a generalization of Lemma 8.10 to all homogeneous polynomials of
odd-degree.

We emphasize that Lemma 8.10 fails dramatically for homogeneous polynomials of even
degree. The canonical counter-example is the Max-CuT polynomial of the complete graph
(Example 6.15):

P =~ 3w, Bl =Y xy

ij=1 i.j=1

Clearly, maxy ye(—11}» p(x,y) = n?, but maxye(_q13» p(x) = O(n). This explains why there
is a gap between Theorem 8.7 and Theorem 8.9.

8.1.4. Anti-concentration

We will need the following anti-concentration result that can be deduced from standard
hypercontractivity (see e.g. [AGK04, Lemma 3.2]).

Lemma 8.11. Let D be a distribution over R" satisfying the following: there exists a constant
B > 0 such that Bx.p[p(x)*] < B? - Ey.p [p(x)z]zfor every degree-d polynomial p. Then,
for any degree-d polynomial p,

> 2758,

P > E
P [p(x) Ep
Relevant special cases for what follows are when D is the uniform distribution over

{£1}" or the standard Gaussian distribution N (0, I,,), which both satisfy the assumption
with B = 9 (see e.g. for reference [O’D14, Theorem 9.21] and [Bog98, Theorem 1.6.2]).

8.2. A simple O(+/n)-certifiable upper bound

We start by describing a simple argument proving that the canonical SoS relaxation of
maximizing homogeneous polynomials of degree-3 over the hypercube has integrality gap
O(+/n). This gives the first certifiable upper bound for this maximization problem.
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Let f(x,y,2) = Xi<ijk<n LijkXiyjzx where (T jx)1<ijk<n is @ symmetric 3-tensor. We
want to approximate
max f(x,y,2). (8.3)

xy,ze{+1}"

Let D be a pairwise independent distribution over {+1}". We can use a construction in
which [supp(D)| = O(n). We will assume without loss of generality that if x € supp(D)
then also —x € supp(D).

We consider the following approximation algorithm: for each X € supp(D), find a
constant factor approximation of

max f(X,y,z) = max Z T, jkXiyjzk , (8.4)
yze{=1}" yze{xl}" &
1<i,j,k<n
using Theorem 8.9. Output the best solution over all choices of x € supp(D).

Call r the maximum of the Grothendieck relaxation of (8.4) over all x € supp(D). The
algorithm outputs a solution of value Q(r). We want to prove that the standard degree-4
SoS relaxation of (8.3) has optimum at most r - v/n, which establishes an O(+/n) integrality

gap-

Let p be the optimal pseudo-distribution for the degree-4 SoS relaxation of (8.3) and SOS
be its value. Let q;(y,z) = y'Tiz = 1 k<n Ii,jkYj2k and write ¢ = (qi, ..., ¢,) such that
f(x,y,2) = (x,q). We have that

2
sosZ=(§<x,q>) <Bl(x.9) <n-Elql?

by Cauchy-Schwarz (Fact 8.3).

On the other hand, by definition of r and our assumption that supp(D) is symmetric,
for every x € supp(D) there is a degree-2 SoS proof (over variables y, z) that

f(xy.2) <rand f(x,y,2) >
Hence, for every x € supp(D) there is a degree-4 SoS proof that
fEy2)’ =& <r

which means that
(x q)° = E lqll > -5032,

“:EJI

where we use the fact that the pairwise 1ndependence of D implies that

E (X, 0) = |v|?
B @0 = ol

for allv € R". Putting things together we get SOS? < n-r?, which completes the argument.
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8.3. An O(+/n)-factor approximation with rounding

We now give a simple polynomial-time certification and rounding algorithm via constant-
degree SoS that achieves approximation O(+/n) for cubic optimization over the hyper-
cube. Our key technical ingredient is a new use of polynomial reweightings of pseudo-
distributions (see Lemma 8.13).

Theorem 8.12. For any decoupled homogeneous degree-3 polynomial

n
flxyz2) = Z Tijixiyjzk
i,j,k=1
the degree-6 SoS relaxation of max,.y ze(+1}» f(x, vy, 2) has integrality gap at most O(+/n).

Furthermore, there is a polynomial-time rounding algorithm that, given a degree-6 pseudo-
distribution p with SOS := Ey f(x,y,2) > 0, outputs a solution x,y,z € {+1}" with value
f&52) >0 (%)

We describe another algorithm outputting a certificate with similar guarantees in §8.2.
In comparison, the proof in this section will come together with a rounding and will allow
us to build up towards a more general tradeoff between time and approximation in §8.4.

Recall from §6.4.3 that the strategy of [KN08] is to first sample x ~ {+1}" and then solve
for y and z using Grothendieck rounding. One might expect that a similar strategy works
to round an optimal SoS solution. However, given an optimal pseudo-distribution g, it
is not clear how Eu > %1 Xi(y'T;z) relates to the SoS value Eu ?  xi(y'T;z). In fact, the
former can be much smaller than the latter or even zero.

Denote q;(y, z) := y' T,z for convenience. Our key idea is that even though Ey (x, q) may
be small, we can reweight the pseudo-distribution y and get another pseudo-distribution p’
such that Eyr (x,q9) = (Ey (x,q)*)'/2. Furthermore, the quantity on the right-hand side can
be related to the SoS value (for a typical x). One may view this procedure as raising the
(pseudo-) expectation of a random variable to be close to its (pseudo-) standard deviation,
which is reminiscent of the scalar fixing lemma of [BKS17].

We capture this idea in the following lemma:

Lemma 8.13. Let p(xy,...,x,) be a degree-t polynomial and let ;1 be a degree-3t pseudo-
distribution over (xy, ..., x,). There is reweighting of u by a degree-2t polynomial such that
the resulting degree-t pseudo-distribution |’ satisfies

~ 1 —
pl| > - [E[P?].
H 3 H

Proof. Let m = Ey [p?] > 0. We can assume that ‘Eu [p]‘ < %, otherwise we are done

without any reweighting.
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First, suppose that ‘Eu [p3]| > ’%3 Reweight i by the degree-2t SoS polynomial p? and

Eﬂ [P3]

E,[p?]

1

let 1/ be the resulting pseudo-distribution. Then we have |E,l' [p]) = > 3 JEu [p%].

Now suppose that }Eu [p3” < ’%3 Reweight y1 by the degree-2t SoS polynomial (p + m)?
and let i/’ be the resulting pseudo-distribution. Note that:

[(p+m)?] = zm2+zm-f§[p] €

b b

3 3

= =

[élm2 8m?

where we used ‘Ey [p]‘ < 7. In particular, we are reweighting by a polynomial with

non-zero pseudo-expectation, so this is a well-defined operation. Moreover,

- - - - 4
E[(p+m?p] >2m-E[p?] - [E [p*]| - m® - [Elpl| > =
H H H 1 3
Putting everything together, we obtain ‘Ey/ [p]‘ > 2 Ey [p?].
Thus, we get the desired result in both cases. ]

We are now ready to prove Theorem 8.12.

Proof of Theorem 8.12. Let q;(y,z) = y'T;z for each i € [n]. For simplicity of notation, we
will drop the dependence on y, z and denote q¢ = (g, - . ., ). Then, we have

n n n
SOS = ZE[xiQi] < Z Elqf] <4|n- ) Elgl=  [n-Eliql.
i=1 / i=1 ¥/ =1 " g

by Cauchy-Schwarz and its pseudo-expectation version (Fact 8.3). Next, since

E ,h 2 — 2
B @R = ol

is a polynomial identity,

SOs*<n- E E{qh)?, 8.5
LE Eh (55)
where we recall that ¢ = (g, ..., q,) are degree-2 polynomials in y, z. We now describe

the rounding algorithm.
1. Sample h ~ {+1}", and set x := h.
2. Reweight the pseudo-distribution p via Lemma 8.13 to obtain a degree-2 pseudo-

distribution ;' such that |E,,, @ h>) > L JE, (q.h)?.
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3. Use Grothendieck rounding (Theorem 8.9) on y’ to obtain solutions y,z € {+1}"
satisfying y' (X1, hiTi)z > K—lc : |Ey/ {q, h)’ (we can get the guarantees with the
absolute value by flipping the sign of h).

First, note that Ey (g, h)? is a degree-2 polynomial in h, so by Paley-Zygmund inequality,

SOS?

Pr [E (q.h)? > > Q(1),

h~{x1}n | 1

meaning that we get a “good” h with constant probability. For a good h, it also holds that

1 = SOS
> — [E(q.h)?*>Q (—) .
3Kg '\ & \n
SOS

Thus, repeating the above poly(n) times, we can obtain a solution with value Q (W) with
high probability. This completes the proof. ]

— 1 |=
f(x:y’ Z) > K_'E <qah>
G K

8.4. Going beyond O(+/n)-approximation via
higher-degree SoS

We now switch to a general time/approximation tradeoff for the problem by rounding
higher levels of the SoS hierarchy.

Theorem 8.14. Let k, n be integers such that 2 < k < n. For any decoupled homogeneous
degree-3 polynomial f(x,y,z) = ZZj,k:l Tijkxiy;zx, the canonical degree-(6k) SoS relaxation

of maXyy ze(+1)n f (X, Y, 2) has integrality gap at most O(\/%)

Furthermore, there is an n°® -time rounding algorithm that, given a degree-(6k) pseudo-
distribution with SOS = E, f > 0, outputs a solution x,y,z € {£1}" with value f(x,y,z) >

Q(\/E) . SOS.

Recall that the v/n approximation factor in the previous section was coming from relating
the SoS value Ey (x, q) to a quantity of the form Ep,_(41yn El, (h, q)*. To make use of higher
levels of the SoS hierarchy, we will now connect the SoS value to higher moments of the
form Ep 11y EH (h, q)Zk. The proof of Theorem 8.14 will then follow from a high-degree
version of the polynomial reweighting from Lemma 8.13.

One can interpret the inequality from the previous section

E(x,q)*<n- E E(hq)*
o h~{£1}" p
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as the SoS analog of the inequality ||q||? < n - |Iqll5 = n - Bp~fz1yn (b q)” that holds for any
q € R" by Cauchy-Schwarz and an explicit variance equality. Our higher-level proof also
has a classical analog, namely:

lqlly < O(1) - \/7 ( ,q>2k) : (8.6)
h~{x1}"

Such an inequality holds for any g € R" [Mon90]. To see that, decompose q and h into
k (arbitrary) blocks ¢V, ..., q"® and AV, .. . h® of size roughly . By Paley-Zygmund

inequality, we get that ‘(q(i),h(i)>‘ > Q(1) - ||q(i)||2 > Q(1) - \/%”q(i)”1 holds with at least

~0(k)

constant probability for any fixed i € [k]. So with probability at least 2 we have

@.1)| > (1) - [Ellglls, which in turn implies (s.6).

Although this proof is streamlined, the part using Paley-Zygmund and independence
across the k blocks does not directly translate into a sum-of-squares proof. We now give a
different and degree-O(k) sum-of-squares proof of the inequality.

Lemma 8.15. Letk <n € N, and let x = (x1,...,x,) be indeterminates andv = (vy, ..., 0,)
be such that each v; is a polynomial of degree < t. Then,

% k\*
{x?=1, Vi€ [n]} Wk{ [ 2k]>(a) .0

Proof. We divide [n] into k blocks, each of size at most []. For ¢ € [k], let x® v® be the
vectors x, v restricted to the t-th block. Then,

+1)n

k

2k k 2k
x0 2k
2(t+1)k <x, U> = (Z <x(t), U(t)>) <2 £~{+1}k (Z & <x(t), U(t)>) , (87)

=1 =1

since (Zlle &t (x(t), v(t)>)2k is a square for each £ € {+1}*. Expanding the above and using
the fact that all odd moments of £ ~ {+1}* vanish, we get

k 2k k )
() v(t)> = c <x(t) v(t)> " (8.8)
EfZeteen) < 2 ol
yEN®:|y|=k
where ¢, = %. Here |y| = Zt 1 v+ and y represents a multiset of [k] of size |y|. Next,
t=1 t)-

by SoS Cauchy-Schwarz (Fact 8.2), we have that

. x,0 2 2n
(o =1 vie Dot} fgiy (+900) < O 102 < () o1,
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since x) has dimension at most 21 < Zk—” Next, using the identity

lO|2 = E <h(r> v(t)>2
27,0 ’

where h() ~ {+1}dim(=")

k

k
X,0 2Ys 1
{sF=1Viehl} hume | | <x(”,v<”> <[]

(2—) o2
t=1 t=1 k
k

2] e

t=

k
2n 2y:
an B <h<f>, (t)>
k) l;lhm 7

where the last inequality uses Fact 8.2. Combining the above with (8.7) and (8.8), we have

k k
4n 2yt
2 _ . X0 2k ty . (t
{xi =1,Vie [n]} }72(”1),( (x,0)"" < (?) -hN{IE,l}n E CYl | <h( , 0 )>

yeNklyl=k =1

N

Finally, since kY, ..., h® are uniformly random Boolean vectors, multiplying A" by
e ~ {1} does not change the distribution. Thus, applying (8.8) again, we get

: RO 0\ S &) () !
2 o [(r000) T =R 3 a (h0)

yeN" lyl=k =1 t=1
k 2k
-E <h<t> (t) )
=E (h,
B (h, o)’
This completes the proof. ]

Our second key ingredient is the analog of Lemma 8.13 for high moments.

Lemma 8.16. Let k € N. Let p be a degree-t polynomial in variables x € R", and let p be
a degree-(2k + 2)t pseudo-distribution. There is a degree-2kt reweighting of u such that the
resulting pseudo-distribution y’ satisfies

> (% [pz"])

==

b
y/
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L

Proof. Let m = (Ey [ka])Zk > 0.

First, consider reweighting y by the degree-2kt sum-of-squares polynomial p?* and

~ B 2k+1
denote by 4 the resulting pseudo-distribution. Then, we have ’Eﬂl [p]| = “E”[:Z#“. We

2k+1
2k+1] < m3 .

are done if this is larger than 7, hence it remains to handle the case |Ey [p

2k=2 and denote by p, the resulting pseudo-distribution. Note

Now, reweight p by p
that by the pseudo-distribution version of Cauchy-Schwarz (Fact 8.3), as long as y is a

degree-(2k + 2)t pseudo-distribution,

b

B zkz\E 2k-27
0<E[p"]" <E[p™]

= =

[p2k+2]

so that Eu [ka_z] > 0 and the reweighting is well-defined. Furthermore, we have ‘Eyz [p] ‘ =

EArES
]E,, [P2k72]

that )E,, [p2’<‘1]| <Z.E, [p*?.
Finally, we consider the reweighting of u by the SoS polynomial (p + m)

. Once again, we are done if this is larger than %, so we assume from now on

2p%=2 and call

3 the resulting pseudo-distribution. We have:

2k
E [(P + m)2p2k_2] =m*+om-E [ka_l] +m? . E [pzk—2] c (0’ 877; l ’
T p :

2k—2]

where we also use Ey [p < m?~2 (which follows from Fact 8.4). In particular, the

reweighting for ps is well-defined. Similarly, we have

E ~ — 4m2k+1
E [(P + m)zpzk—l] > om?1 _ R [pzk+1] -m?. B [pzk—l] > .
p I p
Thus, Epg [p] > 7 holds in this case, which concludes the proof. ]

We are now ready to prove Theorem 8.14.

Proof of Theorem 8.14. Similarly to the proof of Theorem 8.12, we start by defining ¢q; =
qi(y,z) = y'T;z. By Fact 8.4 and Lemma 8.15,

_ 2k k
50s%* = [E(x,q)| <E(xq)* <0 (f) E E (hq¥.
p p k/ uh~{z1yn

Here we require y to be a degree-6k pseudo-distribution.
Since h — Eu (q, hy? is a degree-2k polynomial, by anti-concentration of low-degree
polynomials (Lemma 8.11), we can sample h € {+1}" such that

B 1/2k 2
(E (q,h)Zk) > Q(1) - \/:sos
i n
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with probability at least 270
The rounding algorithm is as follows,
1. Sample h ~ {+£1}" and set x = h.

2. Reweight the pseudo-distribution via Lemma 8.16 such that
) 1/2k

— 1/~
B(gm)|>;(E@m*
U 3\ p

The SoS degree required for the reweighting is 2(2k + 2) < 6k.
3. Use Grothendieck rounding (Theorem 8.9) on 4’ to obtain solutions y,z € {+1}" for
the quadratic polynomial y" (X1, hiT;) z.

The Grothendieck rounding gives us solutions y,z € {+1}" with value

Q(1) -

E(q,h>‘ -
u

Thus, with probability at least 27°%), we get assignments X, 7,z € {+1}" such that

FZ5.2) > Q(\/é) .S0S.

This completes the proof. ]

8.5. Polynomial-size SDPs via compressed SoS
relaxations

This section is dedicated to the proof of the following theorem.

Theorem 8.17. Let k,n be integers such that 1 < k < n. There is a 2°0n%W _time certi-
fication algorithm that, given a decoupled homogeneous degree-3 polynomial f(x,y,z) =
2i<ijksn lijkXiyizk achieves O(4/n/k)-approximation to OPT = maxyye(+1)n f (X, Y, 2).
Moreover, there is a corresponding rounding algorithm running in 2°®n%W time that outputs

a solution x,y,z € {+1}" with value f(x,y,z) > Q(\/%) - OPT.

Roughly, we will proceed by “compressing” the SDP relaxations analyzed in the previous
sections. We will use some explicit hitting set of size 2kn°() and use it to define some
constant-degree SoS relaxations with 25n°(!) variables and one additional axiom.

8.5.1. The blockwise construction of the hitting set

Before explaining how to write down the relaxations, we describe the construction of our
hitting set over a small sample space that “fools” high moments in every direction. We will
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mimic the anti-concentration proof from §8.4 by decomposing the n-dimensional vectors
into k blocks.

Definition 8.18. Let n,k € N such that k divides n. Define the distribution D over
x € {£1}" as follows.

1. Sample b from a 4-wise independent distribution over {+1}%, that is, let b= f(s),
where f : {1} — {£1}% is a 4-wise independent pseudorandom generator with
seed s ~ {£1}" and r = O(logn).

2. Sample ¢ ~ {+1}* independently of b.

)

3. Let X := ¢ ® b. In other words, decompose x into k blocks 7V xR of size % and

setx") :=¢;-bforallie [k].

The following observation can be deduced for example from the classical construction
of k-wise independent sets of random variables [Jof74].

Claim 8.19. The distribution D can be obtained as the uniform distribution over a sample

space of size 2kn0) Iy particular, for any x € supp(D), Prz.p [x = x] > 2~ n~0)

We will also need the following result, which is a direct consequence of the Paley-
Zygmund inequality and the 4-wise independence of b.

Claim 8.20. For allw € Rk, Pr; [|<B,w>| > %||w||2] > Q(1).

Finally, the following lower bound on the moments of X will be the key ingredient to
prove that our relaxation provides a correct certificate to the optimum.

Lemma 8.21 (Large moments in every direction). For allw € R",

_ K\
E xw)* >0 (—) n=OW |lw||% .
x~D n

Proof. We first decompose w into k blocks w, ..., w¥) of size Z» in such a way that

(x,w) = Zle c; <B,w(i)>. Now for any fixed block i € [k], we know from Claim 8.20 that

with at least constant probability over b, it holds that | <B,w(i)> | > %Hw(i) ll2 > %\/g Iw@1,

where the last inequality follows from Cauchy-Schwarz. In turn, by linearity of expectation,

kv~ k
Z <b,w(l)>‘ > Q(l)'\/;”W”l-

E
b |i=t
In particular, there exists some x € supp(D) satisfying | (x,w) | > Q(1) - \/E |lwl||;. By

Claim 8.19, this x must be drawn with probability at least 27¥n=°() from D. Finally, we
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apply Markov’s inequality to get

B @Ew >0 (k) il - pr (|<xw>| Q) \[nwul)
x~D n
k
> ) o
n

This concludes the proof. []

8.5.2. Proof of Theorem 8.17

We are now ready to state and analyze the SDP relaxation. The high-level intuition is the
following: write q; := > ; Tijxy;jzk for all i € [n], so that our goal is now to maximize
(x,q), which by symmetry is equivalent to maximizing (x, g)*. Instead of maximizing
over x € {+1}" we essentially pick a random X from a distribution D that has large 2k-th
moments in every direction. Then we replace the objective function Ep max,, (%, q)° by
the following proxy:

Ez.p E, (%, q)***"
max

u pseudo-distribution on w ng D Eﬂ <5C\, q>2k

As k grows, this yields a sequence of increasingly better approximations leveraging higher
moments of the variables. Since expanding the 2k-th powers would require solving an SDP
of size n®(%), we introduce auxiliary variables {Mz} corresponding to (X, q)k in combinato-
rial solutions.

Proof of Theorem 8.17. Assume without loss of generality that k divides n. Let D be the
pseudorandom distribution from Definition 8.18. Furthermore, we fix a guess o > 0 for
the value of the optimum of the cubic optimization problem (the final certification and
rounding algorithms will be obtained by binary searching for the best possible value of «).

The relaxation. We solve for feasibility the degree-12 SoS program over the following
variables:
« variables y; and z; for all j,k € [n]. To lighten notations we let q; = qi(y,2z) =
2i<jk<n Lijkyjzk for all i € [n] (each g; is a degree-2 polynomial) and write q =
(1, -+ qn)-
« variables M, for each x € supp(D).

and under the following additional polynomial constraints:

y]2.:1 forall j € [n],
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z,zc:1 forall k € [n],

yﬁJNé«iqy—aﬁ]>0. (8.9)

By construction of D, the relaxation has 2n®() variables and constraints.

The rounding algorithm. First, we check that any feasible solution to the SoS program
can be rounded into an integral solution X,y,z € {+1}" achieving value Q(a). Suppose
that there exists some degree-12 pseudo-distribution y (over y, z and M,) satisfying all the
constraints. Then by (8.9), there exists X € supp(D) satisfying

E, M2 (%, q)*

a? < ——
X

=E(x.q)",

yl
where 1/’ is the degree-6 pseudo-distribution obtained by reweighting i by the SoS polyno-
mial Mé. We now use Lemma 8.13 to construct from p’ a degree-2 pseudo-distribution p”
that satisfies

2
E (x,q)* <9 (E <E,q>) :
Il’ ,U”

Finally we use Grothendieck rounding (Theorem 8.9) on y” to find y,z € {+1}" such
that

FEGD > L fFyn)=—F®g> ) a.
Kg v

KG u//

Approximation factor. Our final algorithm consists of a binary search to get the largest
value of ¢ > 0 that makes the SoS program above feasible. Then, some explicit multiple of
a coming from the analysis of our rounding provides a correct upper bound certificate on
OPT.

We now check that this achieves approximation O(\/n/_k) Fix any triplet x*, y*,z* €
{£1}" and let ¢; = X1<jk<n Tijky;z; for all i € [n]. Suppose that (x*,y", z*) achieves the
optimum of the original problem, so that OPT = (x*, q*) = ||q*||:- We set (y,z) = (y*, z")
and My = (x, ¢*)¥ for all x € supp(D), and we prove that this defines a feasible solution.
By Holder’s inequality,

2k+2
2k

~ %\ 2k+2 ~ 2k
) > E ) )
AD@q> (%D@q>

x~

and Lemma 8.21 then yields
]EQN@ M’; <3C\, q*>2 B E&\N@ </x~’ q*>2k+2

Eyop M Ez-p (%, q*)*
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kl/k
> E ’\,*2
(N)<xq> )
ko _o(1)qp12
>Q(1)-—-n "\k/OPT".
n

Assume without loss of generality that k = Q(logn) (since otherwise, one can always
increase k to O(log n) without affecting the target runtime). Then, as long as « < O(1) -

\/g - OPT, (8.9) is satisfied. This completes the proof. []

8.6. Extensions

8.6.1. Optimization over the unit sphere

In this section, we prove the approximation results for cubic optimization over the unit
sphere matching our results over the hypercube:

« We show that the canonical degree-6k SoS relaxation has integrality gap O(+/n/k) by
giving a corresponding rounding algorithm.

« We then prove that a pruned SDP can achieve approximation O(y/n/k) in time
20 poly(n).

Analysis of the canonical degree-k SoS relaxation

We prove that the canonical degree-k SoS relaxation for optimizing over the unit sphere
has integrality gap at most O (\/g) The proof mirrors the hypercube case (Theorem 8.14),

although the analysis is much simpler here since we can directly relate the SoS value to
the moments of the Gaussian distribution.

Theorem 8.22. Fix 1 < k < n. Given any decoupled homogeneous degree-3 polynomial

f(x,9,2) = Xi1<ijk<n LijkXiYjzk, the canonical degree-6k SoS relaxation of

max f(x,y,z)

x,y,ze8"1

has integrality gap O (\/%)

Furthermore, given any degree-6k pseudo-distribution u over (8”_1)3 such that SOS =
E, f > 0, there is an n%®) _time randomized rounding algorithm that outputs with high

probability x,y,z € 8" ! such that f(x,9,z) > Q (\/g) - SOS.
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Proof. Similarly to the proof of Theorem 8.12, we start by defining q; = q;(y,z) =y 'T;z
and consider

2k
505 = (EGnap) < BEma™ < B[l Igl2] - Ellgl?

using Cauchy-Schwarz and the pseudo-expectation version of Hoélder’s inequality (Fact 8.4).

Then, leth ~ N(0, I,,). We know from standard estimates on the moments of the Gaussian
distribution that for any vector v € R", Ey, (h, 0)% = ¢ ||o||%*, where ¢ = (2k—1)!! > (k/2).
Thus, we have

k
~ 2
SOS* < E||q||%* < E h)
Bllalle” <{z) a5 E(g.h)

>2k

1
Since Ey (g, h)*" is a degree-2k polynomial in h, by Lemma 8.11, h satisfies (Ey (q, h>2k) ">

Q(Vk) - SOS with probability at least 2-9%). Moreover, with probability at least 1 — 279"
we have [|h]|; < O(+/n).
Hence, our rounding algorithm goes as follows,
1. Sample h ~ N(0,I,) and let x = ﬁ
2. Reweight the pseudo-distribution p via Lemma 8.1(; to obtain a degree-2 pseudo-
distribution g’ such that ‘Eyr (q, h)) > % (Ey (q, h)Zk)ﬂ
3. Use the lossless rounding for quadratic forms over the sphere (Lemma 8.6) on y’ to
obtain solutions 7,z € 8""! such thaty" (3., hT))z > |]E (q, h>| (we can flip the
sign of h to get the guarantee with the absolute value).
Putting everything together, it holds with probability at least 27°) that

£9.9-— 57> a1z 3
f9.2) = o (Zthl) ”h” > Q(1) - \/;sos.

i=1
Repeating this poly(n, 2¥) times, we obtain a rounding algorithm that satisfies the desired

E (g, h)

guarantees with high probability. ]

Analysis of compressed SoS relaxations over the unit sphere
In this section, we prove the analogous statement of Theorem 8.17 over the sphere.

Theorem 8.23. Fix 1 < k < n. There is a 2°0n%W _time certification algorithm that given
a decoupled homogeneous degree-3 polynomial

flxyz2) = Z Tijkxiyizk

1<i,jk<n
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achieves O(+/n/k)-approximation to

OPT := max f(xy,2).

x,y,ze8n1

Moreover, there is a corresponding rounding algorithm running in 2°® %W time that outputs

a solution x,y,z € 8" with value f(x,y,z) > Q (\/g) - OPT.

Our proof relies on a hitting set construction analogous to Lemma 8.21.

Lemma 8.24. Forany1 < k < n withk = Q(logn), there exists a distribution D over 8"~
supported on at most 209V nOW) vectors such that for allw € R",

%
( E <3?,W>2k) > Q(1) - \/E”W”z-
D n

Proof. Assume without loss of generality that k divides n. We define the distribution D
over x € 8" ! as follows.

1. Sample be {+1}¥ from a 4-wise independent distribution. Similarly to Claim 8.19,

this can be achieved by taking the uniform distribution over a subset of {1}% of size
o(1)
n“t.

2. Sample independently € uniformly over an e-net of 8¥~! of size O(1/¢)¥ for e = =.

3. Output x = \/g . ¢ ® b. Note in particular that ¥ is a unit vector.

Decompose w into k blocks w®, . w® of size % such that

1

Claim 8.20 states that for each 1 < i < f,

~ 1.
Pr “<b,w(’)>| > —|w?,
b 2

> Q(1).

This implies that

—~ A\ 2
E <aw@>>gxn¢mw.
BZ] ?

k
1=

1
On the other hand, for any b € {£1}%, we can find ¢ = ¢(b) in the e-net such that

k

> o)

k

c%hwm>>Qﬂy

1
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Therefore, there must exist x € supp(D) such that (x,w) > Q(1) - \/% - |lw||2, and this x is

-0(1)

drawn with probability at least 27°®)p . Finally, by Markov inequality,

A A k k\*
E Gw)* > Pr (|<x,w>|>9<1>'\ﬁ ~||w||2)-9(—) Il
x~D x~D n n

~0(k) . —~0(1) k\* 2k
= 270000 g (=) iwll*.

This completes the proof assuming k = Q(logn). ]
We are now ready to prove Theorem 8.23.

Proof of Theorem 8.23. The proof is identical to the proof of Theorem 8.17, with the follow-
ing exceptions:
« The Boolean constraints yjz. = 1 and zi = 1 for all j,k € [n] become spherical
constraints: [|y||2 = 1 and ||z]|Z = 1.
« Instead of Grothendieck rounding, we use the (lossless) rounding for quadratic forms
over the sphere from Lemma 8.6.
« If x*, y*, 2" achieve the optimum for the cubic maximization problem, then OPT =
1g*ll2, where g; = X< k<n Tijkyjzz foralli € [n].
« The last sequence of inequalities in the proof of Theorem 8.17 becomes as follows
after using Lemma 8.24 instead of Lemma 8.21:

Ep [M; <3C\, q*>2] Ep <§’ q*>2k+2

Ep [M;] En (%, )%
)"
> E(x,q"
3Ea]
ko _o())apt2
> Q1) - —-n 7\ OPT”.
n

We conclude in the same way as in the proof of Theorem 8.17. ]

8.6.2. Optimizing higher-degree polynomials
Decoupling inequalities

We first prove a decoupling lemma for all odd-degree polynomials.
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Lemma 8.25 (High-degree version of Lemma 8.10). Let d be an odd integer. Let f(x) =
(T, x®d> be a multilinear homogeneous degree-d polynomial in n variables (where T is a
symmetric d-tensor), and letf(x(l), cLx D) = (T,x(l) ® - ® x(d)> be the decoupled poly-
nomial of f. Then, given any xV, ... x\9 € {x1}", there exists a sampleable distribution D
over {+1}" such that

E @] =G F (=0 x)
AS a Consequence,
d! = (1) )
g f@ > g | max (0 ).

Proof. The distribution D can be sampled as follows,
e Let by,...,b -1 be 1.i.d. uniform +1 random variables and let b; := b; - - - by_;. Note
that the distribution of b = (b4, ..., by) is (d — 1)-wise independent and b1 b, - - - by = 1.
« Independently for each i € [n], sample y; uniformly from {b jxi(j ) }ield)-

Since each y; is sampled independently conditioned on b, we have that for any pairwise

distinct indices iy, ..., iz € [n],
d 1 d )
5, [uw =2 [ ] (abexik’ )]
v~ k=1 \“ j=1
_ g-d (1) (Ja)
=d" Z B lbj by -
Jisja€ld]

Since b follows a (d — 1)-wise independent distribution, b1b, - --b; = 1 and d is odd,
Ep[bj, - -+ bj,
[d].

Thus, the summation above reduces to summing over permutations of [d]:

] is nonzero (equals 1) if and only if ji, ..., jg are all distinct, i.e., {ji, ..., ja} =

d! (1 m(d
E [yil---yid]— . B x(())---x(())]

y~D _dd 71'~Sd il id
|
_ g [0 @ |
dd ~Sy (1) I |’

where 7 ~ S; denotes a random permutation of [d]. Finally, as T is a symmetric tensor,
we deduce

d  ~
- (1) (d)
y@@[f(y)] 7 f(x e X )
This proves the first statement of the lemma. The second follows immediately. ]

For even-degree polynomials, Lemma 8.25 simply cannot hold:
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Example 8.26 (Impossibility of decoupling for quadratics). Consider the matrix Q =
I — 117, and define the multilinear quadratic polynomial f(x) = x"Qx and the decoupled
polynomial f(x, y) = x'Qy. Then, it is easy to verify that maxyc(+1}» f(x) = n but
Maxy ye(z1)n f(%y) = n® — n, which is a poly(n) gap.

On the other hand, if we only consider max, |f(y)| like in the setting of [BGG"17]
(as opposed to maxy f(y)), then decoupling inequalities with the same guarantees as
Lemma 8.25 hold for any degree:

Lemma 8.27 (Decoupling for absolute values, any degree). Letd € N. Let f(x) = (T, x®d>
be a multilinear homogeneous degree-d polynomial in n variables (where T is a symmetric
d-tensor), and let f(x, ... xD) = <T,x(1) ® - ® x(d)> be the decoupled polynomial of f.
Then,

d! ~
max z — max (x(l), .. .,x(d)) .
ye{£1}" |f(y)| a4 x(l),...,x(d)e{il}”f
Proof. We use the trick that max,.(.1}» [f(y)| = maxye[_11)» |f(y)|. Thus, given assign-
ments xV, ..., x@ ¢ {£1}", it suffices toround to ay € [-1,1]™.
We next state the well-known polarization identity for degree-d homogeneous polyno-
mials:

f(x(l)’ 3 ',x(d)) _ Ew{@l}n [61 d' fd p (glx(l) e +€dx(d))] .

Define y, := %(elx(l) + - +¢4x(@) € [~1,1]" Then, rewriting the above and using the
triangle inequality,

f(xu),m’x(d)):d_d. E [gl...gd.f(y)]gd_d. E [If(y,)l] -
d! e~{z1}n € d! e~{z1}n £
Thus, there exists some y, € [—1, 1]" such that
Fwl > 5 T, x ). =

Rounding SoS relaxations for high-degree polynomials

We now give a simple polynomial-time certification and rounding algorithm using the
canonical SoS relaxation that achieves approximation O(n%_l) for optimizing decoupled
homogeneous degree-d polynomials over the hypercube. The proof is almost identical to
the cubic case (Theorem 8.12).

Theorem 8.28. Letd > 3 andn > 1 be integers. Given any decoupled homogeneous degree-d
polynomial f(xW, ... x(@) = <T, Ve e x(d)>, the degree-2d SoS relaxation of

(1) (d)
max x o x
x<1),...,x(d)€{il}"f( )
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has integrality gap at most O(nz ). Furthermore, given a degree-2d pseudo-distribution yi
such that SOS = uf > 0, there is a randomized n°? -time rounding algorithm that outputs
*, %D e {21} such that with high probability,

FED,. L ZD) > ot - S0S.

Proof. For is, ..., ig € [n], let q;, i, (D, x?)) = (Ti,. iy D g x(z)>, a degree-2 polyno-
mial in x*) and x?, where Ti, . i, is an n X n matrix corresponding to a slice of the tensor
T.

For simplicity of notation, we drop the dependence on xV, x(? and write

Q = Q(x(l)ﬁx(Z)) = (qi3,...,id)i3,...,id€[n]

as an order-(d — 2) tensor whose entries are degree-2 polynomials in x(* and x?.

Then, we have

—_ 3 d
SOS = Z IE Qis,..iq ° 1(3) ' l(d)]

13, ,idE[n]
B |2
< 2 Bl
. - H
i3,...,ig€[n]
< nd_z Z IE’quli ..... ld]
. - H
i3,....ig€[n]
g_ o~
=n2! ]%IIQIZ,

using Cauchy-Schwarz and its pseudo-expectation version. Here, ||Q||12: denotes the sum of
squared coeflicients of Q.
Let h®, ... 9 be ii.d. uniform random vectors from {#1}". Then,

2
(3) @\ _ 2
o] h(d)<Qh & - eh®) =[0Il .

Denote H := h® ® --- @ h'?_ Then,
SOS? < nd2. E (0, H)?,
H u

where the coefficients of Q are degree-2 polynomials in xV), x(?).

We now describe the rounding algorithm.
1. Sample h®, ... h'D ~ {£1}", and set ) .= h") for j > 3. Denote H =h® ® --- ®
AC)
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2. Apply Lemma 8.13 to obtain from p a degree-2 pseudo-distribution p satisfying

> 2 |E(Q,H)? .
3\«

3. Use Grothendieck rounding (Theorem 8.9) on y to obtain 1 x? ¢ {#£1}" such that

<Q(x(1),x(2)), H> > L.
Kg

'E (Q. H)
i

E<Q,H>‘ :
7

Note that Eu (0, H)? is a degree-2(d — 2) polynomial in h®, ..., h¥. By Lemma 8.11
and hypercontractivity over the hypercube,

> 270

= 2S5 BR 2
Pr [Ig (0, H) IEIEKQ, H)
Hence, with probability at least 27°@ we get a “good” H such that Ey (Q, HY? » n~(d-2)..
SOS?.

Putting everything together, with probability at least 2799 we obtain D, %
that

@ such

FED,LEDY > Q) - SOS.

Repeating the above poly(n, 2¢) times, we can obtain a solution with value Q(n_%“) -SOS
with high probability. This completes the proof. ]

Combining Theorem 8.28 with our decoupling inequalities Lemma 8.25 and Lemma 8.27,
we deduce that the same approximation guarantees hold in the general, non-decoupled
case, for maximizing an odd-degree homogeneous polynomial, or maximizing the absolute
value of an homogeneous polynomial of any degree. While we stated our results on
the hypercube, the same holds for maximizing over the unit sphere, using the Gaussian
rounding from Theorem 8.22 instead of Grothendieck’s inequality.

8.7. Improved approximation algorithms for Max-3-SAT

In this section, we consider 3-SAT formulas where each 3-tuple of variables appears
at most once, i.e. there are no two clauses with the same set of variables. Hastad and
Venkatesh [HV04] used an anti-concentration result of [AGK04] to prove that any 3-SAT
formula with m clauses has value at least % + Q(ﬁ) (which is achieved by a random
assignment with probability Q(%))

We prove the following improvement over this result:

Theorem 8.29. There is a polynomial-time randomized algorithm that, given a satisfiable
3-SAT formula with n variables, finds with high probability an assignment satisfying a (% +

ﬁ(n_%))-fraction of the clauses.
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Notations. A 3-Sart clause C with variables x1, xy, x3 and literals (o3, 02, 03) € {+1}> can
be written as

1
Ve (x1, X, X3) = g - g(ﬁxl + 02X + 03X3

+ 0109X1X2 + 0203X2X3 + 0103X1X3 + O'10'20'3X1X2X3) .

Here we adopt the convention that —1 is True and +1 is False, and we can see that c(x) =0
if o131 = oyx2 = o3x3 = +1, and Yec(x) = 1 otherwise. Thus, a 3-SAT formula can be
represented as a function ¢ : {+1}" — [0, 1],

V() = 2+ i)+ 00+ i),

where fi, f2, f3 are homogeneous polynomials of degree 1, 2 and 3 respectively.
Observe that

o | =

3
<:, <
max NACIIR nax ()] < ¢ nax f3(x)]

In particular, this last statement implies the following crucial observation:
Observation 8.30. If x* is a satisfying assignment, then f;(x*) + f2(x*) > 0.

Before proceeding to describing the algorithm, we show the following version of degree-3
decoupling that augments the guarantees of Lemma 8.10 by controlling also the degree-1
and degree-2 parts:

Lemma 8.31 (Recoupling). Givenx,y,z € {£1}", there exists a polynomial-time sampleable
distribution D over {+1}" such that

1. For any degree-3 homogeneous multilinear polynomial

f(x) = Z T jexiX j X

i,j.ke[n]

(where T is a symmetric 3-tensor), let the corresponding decoupled polynomial be

f(x,y,z): Z Tijkxiy;zk -

i,j,k€[n]

Then, )
E N == .
B =5 fxy2)

2. For any degree-2 homogeneous multilinear polynomial g(x) = X; je[n) Mijxix;,

B [96)] = 5 - (9(x) +9(3) + 9(2)).
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3. Epop [x'] = 0.

Proof. The distribution D can be sampled as follows:
« Sample b; and b, independently and uniformly in {+1}, and let b3 = b;b;. Then
(b1, by, b3) has a pairwise independent distribution and b;byb5 = 1.
« Independently for each i € [n], sample x] uniformly in the multiset {b,x;, byy;, b3z;}.
Then,

, bix; + bzyi + bs3z; blx]' + bzyj + b3Zj bixy + bzyk + b3z
E - S : :
RAUCIIEDIEIR: [ . ; ;
ij,k
1
= E T}jk . (xiijk + X;ZjYk + XjYiZk + XYz + XYz + xkinj)
i,j,k
2 ~
=3 fxy.2).

Similarly, for degree-2 multilinear polynomials,

lblxi + bgyi + bgzi blxj + bgyj + bgzj

E L9 =) M- B 3 3

b
= % (9(x) +9(y) +g(2)) .

The third part follows similarly. ]

The algorithm. We now describe the algorithm that achieves the guarantees of Theo-
rem 8.29. We define § := \/Elcogn (for some small constant ¢ > 0 to be picked at the end of
Lemma 8.35).

The first three steps in the algorithm correspond to each of the degree-1, 2, or 3 part
being large. On a high level, our strategy is quite natural. If the degree-2 part is large, we
use the classical roundings for degree-2 polynomials. If the degree-3 part is large, then we
use our rounding for decoupled degree-3 polynomials from §8.3. In those two cases, we get
an assignment with value % + ﬁ(n_%). If the degree-1 part is large, we introduce a different
algorithm based on a degree-2 SoS relaxation with additional axioms. Our rounding in
this case is inspired by the proof of Theorem 8.7 and uses an additional idea to make the
degree-3 part negligible. In this last case, we get an assignment with value % + ﬁ(n_%)

We analyze separately these three cases now.

Lemma 8.32 (Large degree-1 part). Suppose that i is a degree-2 pseudo-distribution such
that:

'E Lfi ()]
H

> 5, %[ﬁ(x) + fr(x)] = 0.
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Algorithm 2 Approximation algorithm for 3-SaT

Input: A 3-SAT instance in n variables: /(x) = £ + fi(x) + fo(x) + f3(x), where fi, 3. f3
are homogeneous polynomials of degree 1, 2, and 3 respectively.
Output: An assignment x € {+1}" with value % + Q(n_%) with high probability.

1. Solve feasibility for the following two degree-2 SoS programs over variables x =
(X1, ..., %p):

a) With axioms x? = 1 for all i € [n], fi(x) + fo(x) >0

b) With axioms x? = 1 for all i € [n], fi(x) + f2(x) >

0, and fi(x) > &;
0, and fi(x) < 4.
2. If neither program is feasible, move to the next case.

3. Otherwise, let u be either a feasible degree-2 pseudo-distribution for (a), or the
negation of a feasible degree-2 pseudo-distribution for (b).

« Sample g ~ N(Ey x, Ey(x - Eu x)(x - Ey x)").
« Foralli € [n], set

— ng if |gi|
Xi =
sign(g;) otherwise
for some parameter T = T(n) > 0 (to be chosen in Lemma 8.32).
+ Sample
e {1 with probability +p a
-1

: with probability p ak

independently for all i € [n], where p = p(n) (to be chosen in Lemma 8.32).
4. Get x’ by optimizing f,(x) using Charikar-Wirth rounding (Theorem 8.7). Set
x@ = argmax f(y).
yei{x',—x'}

5. Let E(x, Yy, z) be the decoupled polynomial of f3(x).

« Run the degree-6 SoS relaxation of cubic optimization of E over variables
x,y,z € {+1}" with additional axioms f,(y) > -6, fa(z) > —

« Sample X ~ {+1}" and reweight the pseudo-distribution y as in the algorithm
of Theorem 8.12.

+ Apply Charikar-Wirth rounding (Theorem 8.7) on the reweighted y’ to get
y,z € {£1}".
« Obtain x® by recoupling X, ¥, Z via Lemma 8.31.

6. Pick the best assignment among xD, x@ 50,

7. Repeat steps 1-6 poly(n) times and output the best assignment obtained.
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Then xV has value % + §~2(n"%).

Proof. First, up to negating the pseudo-distribution (which does not affect the degree-2
part), we can assume without loss of generality that Eu [fi(x)] >0

The rounding proceeds in two steps. We introduce some parameters p = p(n) € [0, 1]

and T = T(n) > 0 to be fixed later.

1. First, sample a Gaussian with mean and covariance matching what the degree-2
pseudo-distribution indicates, that is: g ~ N(Eu x, Ey(x - Ey x)(x - Eu x) 7). Then,
let x € [—1,1]" be defined as follows: for each i € [n], let x; = % if |gi| < T and
X; = sign(g;) otherwise.

2. Use X as a bias for sampling x(V: sample for each i € [n] independently: xl.(l) =1

+px,

with probability and xl.(l) = —1 with probability _1—5 5

We now analyze this rounding. Define
_ 1 — 1
Ai = Exi—?]Egi, Aij ::E[xixj] —EE[gng] .

Then, at the end of the first step, we have (here, ||fi||; and || f2||; denote the sum of the
absolute value of the coeflicients of f; and f;, respectively):

E[A®)] > ZEAC)] - lIfill - max |Al, (8.10)

BIA@®] > ZEIA@] - Iflh - max [Ayl. (8.11)

\\

SR

2
Claim 8.33. max;i<, |Ai| and maxq; j<n |Aij| are both at most O(1) - e 5.
Proof. Fix i € [n]. First,
1 .
A; = TE [9i(1|g,-|<T - 1)] +E [Slgn(gi)1|g,-|>T] .

Since p is a degree-2 pseudo-distribution over the hypercube 9i is a Gaussian with mean
E,, € [-1,1] and variance 1. Define p; = Pr(|g;| > T) < T/ (this holds provided T is
a large enough constant). By the triangle inequality and Cauchy Schwarz, we have

1 1 2
Al < = IE [gi1jg,57]] + pi < T\/Z_pﬁp,- <O(1)-e77 .

Fix now i, j € [n]. Similarly,

Lo
Aij =03 B [!Mj (1|g,-|<T,|gj|<T - 1)] + = E [sign(9:)gj 1115711 <7

1 . ) .
+ = E [gisign(g) 1< g7 + B [sign(g)sign(9) g g, 1>7] -
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Note that (g;,g;) is a 2-dimensional Gaussian with marginal means bounded by 1 in
absolute value and |]E[g,~gj]| = |Ey [xixj]| < 1 by Fact 8.3. Hence, using once again the
triangle inequality and Cauchy-Schwarz,

1 1
A4l < = [Blgigitigi>T or g 1>7]] + = (E [l9;11g57] + B [|9i|1|gj|>T]) *pi

1 V2
< B |9792] (pi+ 1) + 3 (Vi + 1) + i
<O0(1)-e . 0

Since f; and f, come from a 3-SAT instance with m < n® clauses, we have || fi||1, || f2ll1 <

O(n®). Thus, if we pick T = +/48log n, we get

EA() +fi(®)] > ——=—E[fi(x)]+ E [f(x)] —O(%)

Ja8logn 48 li)g n
ol
where we used our assumption E,, [ f;(x) + f(x)] > 0, together with the fact that
E[fi(x)] >0.

Next, at the end of second step, it holds that:

A =pBUA@I. E|£GD)| = EL@E)]. (512)

E[AD)] =p B IH@] > . (5.13)
Hence, by (8.12) and (8.10):

BAGD) + D) > (0 - P ELA@]+p* B + £

>Q(1)-5(p—_m—o(p—2)—o(p).

vlogn n n?

—_

n 4
logn®

Setting p = we get

3

n i
bl
logz'5 n

B[+ £ > (1)

and we conclude by combining with (8.13). ]
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Lemma 8.34 (Large degree-2 part). Suppose that max fy(x) > 8. Then x® has value
74 ﬁ(n"%).
8

Proof. Using Charikar-Wirth rounding (Theorem 8.7 with T = ©(+/log n)), we get that

fz(x’)>£2( 1 ) max_fi(x).

log nj xe{x1}"

Moreover, f; is invariant by the choice of the signing +x’, while f; + f; changes sign. Thus,

x? has value % + @(n_%) (recall that § = \/ﬁlcogn)' ]

Lemma 8.35 (Large degree-3 part). Suppose that max, f>(x) < 8 and |fi(x*)| < & for some
assignment x* satisfying the 3-SAT formula. Then x® has value % + Q(n"%).

Proof. We run the canonical degree-6 SoS relaxation on the decoupled polynomial ﬁ (x,y,2)
associated to f3 with variables x,y, z € {+1}", and the additional axioms f,(y) > —§ and
f2(z) > —4. Let u denote the resulting pseudo-distribution.

Since max, f2(x) < 4, |fi(x*)] < § and § = 0(1), we must have f3(x*) >
Observation 8.30, we get that the delta pseudo-distribution centered at x =

% —0(1). Using
y=z=x"isa
feasible solution to the SoS relaxation, so that y satisfies

Ef(xyz) > - —0(1), Bfiy) > -5 Bf(z)> -5
H 3 H H

Next, we sample x ~ {+1}" and reweight y using Lemma 8.13 to get a degree-2 pseudo-
distribution y'. The same analysis shows that with at least constant probability, x satisfies

I@ﬁ(}, y.2) > Q (%) . (8.14)

Furthermore, we claim that for C > 1,

P IR > -C8) > 1 3
To see this, note that Ex f2(x) = 0 because f; is multilinear. The above bound then follows
from the assumption max, f,(x) < 8. Therefore, by a union bound, with at least constant
probability we get a good x that satisfies simultaneously (8.14) and f2(x) > —CJS. By
repeating the sampling poly(n) times, we can find such an x € {+1}" with high probability.

Now, fix x € {+1}" satisfying the previous conditions. We apply Theorem 8.7 to the
degree-2 pseudo-distribution p’ over (y,z) € {£1}*" for some T > 0 to be fixed later.
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Denoting by || f2]|1 (resp. || f5]]1) the sum of the absolute value of the coefficients of f, (resp.
f3), we have:

[fz(y)] [fz(y)] SN
ElrG]> [fz(Z)] SN

E [ﬁ(zy,a] > g [E(zy, 2] -se F Al

The constraints f,(y) > —d and f,(z) > —J still hold for the reweighted pseudo-distribution
1. Moreover, ||fz||; and || f3]|; are both O(n?), so by picking T = /8 log n, we get

E ()] >—o( 0 )—o(l),

logn n

E5)] > —o(lo‘;n) —O(%) ,
1 1
vz [ﬁ(x y’z)] (\/ﬁlogn) _0(5) '

Finally, once we have x,y, z, we recouple them to get x(® by Lemma 8.31, obtaining
B AGY) = FETD),

x(®
() + ) + /2(2),

B fix"?) =

x(3)

E fl(x(3)) _

x(3)

O \olr—* \ol

Thus, we have

(3) 7 1 7 1
Ey(x") > +Q(\/—logn) 0(d) = +Q(\/ﬁ),

where the last equality holds provided that we pick the constant ¢ > 0 in the definition of
d to be small enough. This concludes the proof. ]

Proof of Theorem 8.29. We prove that one of the assumptions of Lemma 8.32, Lemma 8.34
or Lemma 8.35 must hold. Fix some satisfying assignment x* to the 3-SAT formula.
1. If |fi(x*)| > &, then one of the two SoS programs from Step 1 of Algorithm 2 is
feasible, and the assumptions of Lemma 8.32 hold.
2. If max, fo(x) > 9§, then the assumptions of Lemma 8.34 hold.
3. If | fi(x¥)| < § and max, fo(x) < §, then the assumptions of Lemma 8.35 hold.
Hence, in all cases we get a random assignment x € {*1}" satisfying Ey/(x) > % +

Q(n71). By repeating the rounding poly(n) times, we can get such an assignment with

high probability. ]
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8.8. Summary

8.8. Summary

This core chapter introduced our new rounding algorithm for higher-degree sum-of-squares
relaxations, our compression of SDP relaxations which yields certification guarantees
matching the result of Khot and Naor, and our improved approximation algorithm for
MAX-3-SAT.
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CHAPTER 9.

Spencer’s Theorem via Regularization

In this third and final part of the thesis, we shift focus from polynomial optimization to
the problem of discrepancy minimization. In discrepancy theory, the objective is the norm
of a linear function:

, (9.1)

where uy, ..., u, are input vectors and ||-|| is a fixed norm. Unlike the problems considered
in Part II, this function is usually not well-approximated by low-degree polynomials.
However, a parallel story will appear: as before, (9.1) is a non-convex function, and as
before, we study both the cases where x lies on the unit sphere 8""! or the hypercube
{—1,1}" — the latter being the classical and more challenging setting in discrepancy theory.

In this chapter, we introduce a new framework for discrepancy minimization based on
two ideas: (1) regularizing the objective (9.1), and (2) applying a second-order optimization
method to the resulting problem. We apply this framework by to a new proof of a seminal
result of Spencer from the 1980s [Spe85], which corresponds to the case where the vectors
u; have uniformly bounded entries and the norm ||-|| is £s. Our proof is simple and has
several new features compared to existing arguments.
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A preliminary version of the results in this chapter appeared in [PV23].
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9.1. Introduction

9.1. Introduction

Our main result in this chapter is a new proof of the following result of Spencer [Spe85]:

Theorem 9.1. Forany A € [—1,1]%", there exists x € {—1,1}" such that

2d
|Ax]||s < +[nlog (—) . (9.2)
n
Note that the left-hand side of (9.2) matches (9.1), where the vectors uy, ..., u, are the
columns of A.

Several different proofs of Theorem 9.1 are known. The original argument of [Spe85] is
based on the pigeonhole principle. A different method pioneered by Gluskin in the 1980s
uses insights from convex geometry [Glu89, Gia97, Rot17, ES18]. Bansal [Ban10] analyzed
for the first time a polynomial time algorithm finding a coloring matching the guarantees
of (9.2). Bansal’s algorithm is a random walk in the hypercube whose increments are
chosen by solving a semidefinite program. This approach was simplified by Lovett and
Meka [LM15]. More recently, Levy, Ramadas, and Rothvoss [LRR17] and Bansal, Laddha,
and Vempala [BLV22] introduced new deterministic algorithms for the problem which are
closer to our framework. We will compare our approach with theirs.

Random coloring. As emphasized in Chapter 1, Spencer’s guarantees go much beyond
what the probabilistic method shows. When n = d, Theorem 9.1 shows that any sequence of
n bounded vectors in R" have a coloring x of discrepancy O (y/n). However, if x ~ {-1,1}"
is a uniformly random coloring, then the discrepancy of a fixed constraint exceeds ¢ with
probability e~*/2", To take a union bound over all n constraints, we would need to pick
t = O(y/nlogn), which gives a discrepancy bound which is away by a +/log n-factor to the
bound in Theorem 9.1. This is not an artifact of the analysis: in some instances, the set of
colorings matching Spencer’s guarantees has exponentially small measure.

9.2. A new approach to Spencer’s theorem
In this section, we give an overview of our approach to prove Theorem 9.1. Mirroring Part I,

our proof will be algorithmic: we design an algorithm that takes as input A and outputs a
coloring x satisfying (9.2). This section is informal; proofs are delayed to §9.3 and §9.4.

9.2.1. Newton’s method on a regularized objective

We introduce our algorithm in the case d = n for simplicity.
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Our algorithm is a sticky walk in the hypercube. We build a deterministic sequence
x(t) := (x1(t),...,x,(t)) for times t € [0, T]. At any time step t, x(¢) will be an element
of the solid hypercube [—1, 1]" that represents a partial coloring. We start from x(0) :=
(0,...,0) and the dynamic ends when x(t) hits a corner of the hypercube. We define the
set of active coordinates of a fractional coloring x € [-1,1]" as

Fi=F(x)={je[n:x ¢ {-11}}.

The final algorithm described in §9.3 and §9.4 will essentially be a discretization of this
continuous dynamic.

Regularized objective. In order to control the quantity ||Ax||. over the duration of the
walk, we now define a smooth proxy for the £,,-norm. The following standard observation
allows to replace the £,,-norm by a one-sided version:

A
Remark 9.2. Given A € R¥" the matrix A’ := [ l has dimension 2d X n, and satisfies

for any x € {-1,1}™

A'x); =||A .
max (A'x), = |l Azl

Until Chapter 11, we will not make any distinction between d and 2d, so up to changing
A to A’, this observation allows to bound only the maximal entry of Ax without loss of
generality.

Naturally, for any y € R", we can equivalently write:

i€[n] rel,

maXyi:maX<r,y>, Where An = {VERZO :Zri::l}-

i<n

Instead, we consider the following regularized version of the right-hand side, which is
the maximization problem where we added an ¢ /,-type penalty for each element of the
simplex:!
1
*(y) = +2 Z,

©"(y) = max(r,y) ; r;
In what follows, w*(Ax) will play a role of proxy for ||Ax||.. It is not hard to see
(Lemma 9.11) that we only lose a 2+/n additive factor through this approximation. Therefore,
for proving Theorem 9.1, it suffices to bound the total increase of the regularized maximum.
We will discuss in §9.2.3 and §9.4 the choice of this particular ¢ /;-regularizer.

' The choice of this specific penalty may appear arbitrary at this point; we justify it in §9.2.2 and Remark 9.13.
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Algorithm 3 Continuous dynamic for discrepancy minimization

1: while F # @ do
2: 8 — argmin (A"Vw*(Ax),8)+ 3-8 ATV’w*(Ax)AS

8:(8,x)=0
and supp(8)CF

x—x+ed
Fe—{ie[n]:x¢{-11}}
end while
return x

Continuous dynamic. We sketch our dynamic in pseudo-code in Algorithm 3. Essen-
tially, we impose two conditions on the update direction §: supp(d) C F ensures that
the walk stays in the solid hypercube by fixing the coordinates of x when they reach
+1, while (8, x) = 0 ensures that the dynamic will eventually converge to a corner of
the hypercube. Under these constraints, we select the direction that minimizes the best
quadratic approximation of our potential function w*(Ax). In this sense, this is essentially
a Newton step.

Local analysis. We would like to bound the increase in potential,

dw*(Ax)

1
— = (Vo' (Ax), AS) + —(AS, Viw*(Ax)AS),
dllx|l5 2

where 6 is the minimizer on line 2 of Algorithm 3.

Since the quadratic term is invariant by sign changes +8, we can always upper bound the
term that is linear in & by 0. Thus, it suffices to prove that the matrix A” V?w*(Ax)A has a
small eigenvalue on the subspace S := {§ € R" : (§,x) = 0 and supp(8) C F}. For this, we
need to understand better the regularization construction — as we will see in Lemma 9.12,
it follows from standard convex analysis arguments that

Viw*(Ax) < diag(V)% for some vector V € A, .

By further use of the orthogonality trick, we can select a slightly smaller subspace than S
whose elements “do not see” the rows i for which V; > 1/|F|. A random element § in this
subspace achieves quadratic form at most || 8%/ \/m in expectation. The details can be
found in Lemma 9.15. This ultimately implies

do*(Ax) < : (9.3)
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Analysis of the whole dynamic. For k € [n], denote by t; := min{t > 0 : |F(t)| < k}
the first time for which the number of active coordinates reaches k. From the constraint
that the update direction is always orthogonal to the current partial coloring, we get after
integrating (9.3) over t € [0, T] that

5 (-0 15 = Nl (115

0" (A%(T)) - 0*(0)

Finally, we apply summation by parts and use the fact that Y}, [|x(ti—1)[|Z = [lx(2:) |3 < k:

o (AX(T)) = 0'(0) £ Vi + ), 2 37 It I = (0l < V.
k=1 K?

i<k

Combining this with our previous observation that ©*(0) < v/n concludes our proof sketch
of Theorem 9.1 in the case n = d.

9.2.2. Barrier function interpretation

We highlight here one motivation behind the specific choice of the #;/,-regularizer. We
defined w™ as the solution to a convex optimization problem which is trying to smooth out
the f,-norm. This optimization problem has an equivalent dual formulation which shows
that it is also an “auto-adjusted” barrier function:

Claim 9.3. Foranyy e R",
n 1 n

1 1
* — 2 :
w*(y) = 1331( (rry)+2 ) r’=_min A+ E

p— A>max;e(n) Xi

The proof of Claim 9.3 is a standard dual derivation.

The barrier function y — 7, A—Ly, appears in multiple fields; in free probability, it
is known as the Cauchy or Stieltjes transform Gy,(A). The inverse of that function, the
K-transform Ky, maps (0, o) to (max; y;, ©), so that

o' (y) = min A+ Gy(d) =mino + Ky (v) .
A>max; y; >0

This barrier function was first introduced by Batson, Spielman, and Srivastava [BSS14]
in the context of graph sparsification, and later developed by Marcus, Spielman, and
Srivastava [MSS22, MSS18] as part of their theory of finite free probability. While in
previous works [BSS14, BLV22], a parameter A = A(t) has to be carefully chosen and
tracked during the analysis, here we make the natural choice of A which makes A and G, (1)
on the same scale. As we will see, this turns out to significantly simplify the analysis of

this kind of methods.
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9.2.3. Regret minimization interpretation

We now give an alternative derivation of our algorithm as a 2-players game between a
builder and an inspector. We refer to the series of blog posts [Tre19] for other applications
of this perspective. We note that connections between regret minimization, barrier potential
functions, and second-order differential equations appear in various fields; see [KS05].

Using the observation from Remark 9.2, the discrepancy of a matrix A € R¥" can be
written in the following min-max form:

disc(A) = min max(r, Ax) ,
xe{-1,1}" reAy

where we rewrote the inner optimization problem to make it obviously convex. With this
formulation in mind, it is natural to view discrepancy minimization as a 2-players game
between a builder who constructs a coloring x € {—1,1}", and an inspector who picks test
vectors r € Ay.

We consider a version of this game indexed by time ¢t € [T]. At every time step,

1. The inspector picks a test vector r(t).

2. The builder picks an update vector &(t).

3. The inspector gets payoff (r(t), Ad(t)).
Let x(T) = 6(1) +... + 8(T) be the vector constructed by the builder. At the end of the T
rounds, the best payoff in hindsight for the inspector is

max (r, Ax(T)) , (9.4)

which is precisely the discrepancy objective. Following the standard online optimization
terminology, we call regret of the inspector the quantity

T
Regret(T) = max (r, Ax(T)) - Z (r(t), AS(t)) . (9.5)

t=1

Strategy for the inspector. Following this analogy, the inspector will play a low-regret
strategy to make sure that her total payoff is not much smaller than the discrepancy
objective (9.4). A standard class of low-regret strategy for online convex optimization are
Follow the Regularized Leader (FTRL) strategies. For a given regularizer o : Ay — Ry,
the inspector picks the test vector
r(t+1) = argmax (r, Ax(t)) + w(r) .
rely

Note that without the w(r) term, no non-trivial upper bound on the regret of such a strategy
would be possible. This is because the builder could pick two discrepancy constraints and
alternate update vectors that incur a large cost on these two constraints. In this case, the
regret (9.5) would be as large as T/2.
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Chapter 9. Spencer’s Theorem via Regularization

Regret upper bound. This regret minimization framework can be equivalently seen as
a way to come up with good smooth potential functions. Let

d(x) = max (r, Ax) + w(r).

The standard way to upper bound the regret of a strategy in online learning consists in
using @ as a potential function and analyze how much it increases during the game. Indeed,
since w takes non-negative values, we have

d(x(T)) = max (r,Ax), ®(x(0))= max w(r).

Moveover, by construction, we have V®(x(t)) = ATr(t). Hence, if we work in the regime
where the update vectors are small enough (we impose this as a constraint to the builder),

O(x(1)) — D(x(t — 1)) = (VO(x(t)), AS()) + % (AS(1), V20 (x(1)) AS(L)) .

So summing the first term on the right hand side over ¢t < T gives exactly the total payoff
of the inspector. In conclusion,

T
Regret(T) < ®(x(0)) + % > (8(1), ATVER(x (1) AS(1)) .

t=1

Strategy for the builder. First, the builder picks the update vectors §(t) to make the
payoff of the inspector negative. This implies that the regret (9.5) is an upper bound on
the discrepancy objective (9.4). Then, the builder picks update vectors that makes the
upper bound of the regret as small as possible. In this way, we recover Algorithm 3, and its
analysis starts from the above regret bound.

We will come back to this interpretation in §11.2.

9.3. The regularization framework

In this section, we define formally our regularization framework.

9.3.1. An iterative meta-algorithm

We start by describing a generic iterative algorithm for discrepancy minimization that
will serve as a basis for incorporating the potential functions based on regularization.
Following §9.2, we will construct a sequence of partial colorings x(¢) € [—1, 1]” for integer
times t = 0, 1,.... Each step consists in picking an update vector § and adding it to x(t).
Whenever some coordinate of x(¢) becomes +1, we say that the coordinate is frozen. We
will also say of an unfrozen coordinate that it is active.
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9.3. The regularization framework

The oracle

Suppose that we are given some blackbox algorithm oracle that encapsulates all the pos-
sible choices of directions of the update vector. In the sequel, oracle(A, x) will correspond
to a subset of vectors that do not increase too much the value of the regularized potential
function when x is the current partial coloring.

Assumption 9.4. Let C > 0 be some universal constant. Given a matrix A € R®" and a
partial coloring x € [-1, 1]", oracle(A, x) satisfies (with F := {j € [n] : x; ¢ {-1,1}}):
« If |[F| > C, oracle(A, x) is a subset of Rf such that the intersection of oracle(A, x)
with any halfspace of R contains a half-line.

« If |F| < C, it returns the value undefined.

The meta-algorithm

With a given oracle, the meta-algorithm for discrepancy minimization is Algorithm 4.

Algorithm 4 Generic iterative algorithm for discrepancy minimization

1: Input: A € R I e (0,1)
2. Output: x € {+1}" (a low-discrepancy coloring of A)
3: Let x(0) « (0,...,0) and t « 0.
4: while oracle(A, x(t)) is not undefined do
5: Choose any unit vector § in
oracle(A, x(t)) N {8 € R" : {8, x(t)) = 0}.

6: Let

£(t) < min {g >0:3j € [n],x;(t) € {-1,1} and x;(t) + €6; € {-1, 1}}
7: Set

x(t+1) « x(t) + min(L, (1)) 8.

8: Update t « t + 1.

9: end while

10: Let T < t and x; « sign(x;(T)) for all j € [n].
11: return x”.

The following three immediate observations on Algorithm 4 will be central to our
framework:

Observation 9.5. Forany t =0,...,T — 1, [|x(t + 1) — x(#) || < L.
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Observation 9.6. The final step on line 10 adds at most C maX;e[q], je[n] |Aij| to the dis-
crepancy of the coloring, where C is the constant from Assumption 9.4.

Observation 9.7. There can be at most n/L? iterations of the main loop of Algorithm 4.
Therefore, Algorithm 4 runs in polynomial time as long as oracle runs in polynomial time
and L > n=OW,

Proof. When ¢(t) < L, at least one additional coordinate will reach +1 and will be frozen
at the end of the iteration. This can happen at most n times. When ¢(t) > L, since we pick
our update vector orthogonal to x, we have ||x(t + 1)||3 = ||x(¢)]|3 + L*. This can happen at
most n/L? times. ]

For our purposes, we will always set L = n~%() and computing oracle will only require
elementary linear algebraic operations in R" (intersection, orthogonal complements, direct
sums, computation of eigenspaces, etc.).

9.3.2. Regularized maximum

Our main tool for building proxies for discrepancy is the following regularized version of
the maximal entry of a vector.

Definition 9.8. For any convex function ¢ : A; — R, we define ¢* : R? — R by
¢"(y) = max (r,y) — ¢(r).
relg

We will call ¢ the regularizer. It maps elements of the simplex to some penalty in a convex
way. By symmetry, it makes sense to focus on regularizers of the form ¢(r) = X;c(4) @(r:)
for some one-dimensional convex ¢: R — R. The following two special cases will play an
important role in our theory.

Definition 9.9. For any 0 < g < 1, the {;-regularization of the maximum, parametrized by
n > 0, is the function w, : R? — R such that

d
« - 1 q .
Wyn (y) = Irlé%i( (r,y) + _’7‘] E r/, foranyyeR™.

i=1

Definition 9.10. The (negative) entropy regularization of the maximum, parametrized by
n > 0, is the function smax: R¢ — R such that

d
1
smax,(y) = Irlé%i( (r,y) — 5 Z rilogr;, foranyyeR™.

i=1
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It is not hard to see that in this case, the solution of the maximization problem can be
written in closed form: smax,(y) = % log (Z?zl exp(nyl-)), thereby recovering the usual

formulation of the softmax function.

9.3.3. Regularization bounds

We now present our two main technical lemmas that give an analytic justification for the
{; and negative entropy regularization. The first one (Lemma 9.11) estimates the additive
error incurred when tracking the regularized version of the maximum instead of the true
maximum. For constant 1 and g, the approximation is worse for £;,-regularization than for
negative entropy regularization (polynomial vs logarithmic in the size of the vector).

Lemma 9.11. Lety € R? and g € (0,1). IFM(y) = max;<i<q Ui,

. di—1 logd
M(y) < wg,(y) < M(y) + T and M(y) < smax,(y) < M(y) + o

Proof. The lower bounds follow from picking r to be the Dirac mass function centered on
the maximum coordinate. For the upper bounds, note that on the one hand, for all r € Ay,
(r,y) < M(y), and on the other hand, }; r] < d'™% (resp. — X,; r;log r; < logd) by Jensen’s
inequality. ]

The second one (Lemma 9.12) bounds the first two terms in the Taylor expansion of
the potential function. In the sequel, this will allow us to control the increase in £,,-norm
when making a small update in our iterative algorithm. As we demonstrated in §9.2, what
matters in this expansion is the second-order term. Indeed, in applications to discrepancy,
we will always trivially upper bound the first-order term by simply picking an update that
is positively correlated with the gradient (which will be an easy additional condition to
impose).

Lemma 9.12. Fixy € R andq € (0,1). LetV := Vg, (y). ThenV € Aq and forall 6 € R4

. 1-
with ||6]|c < 8—’;1,

d
0l (Y +8) < @y (y) + (V. 8) + ﬂ_q 3 v
i=1

Similarly, if V := Vsmax, (y), then V € Aq and for all § € R with ||8]|e < #,

d
smax,(y + &) < smax,(y) +(V,8) +n Z V62,

i=1
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Proof. Consider first the {;-regularizer with n = 1. To lighten notation, we write " for
Wgqp- Recall that

d
rl. (9.6)
=1

S

w*(y) = max (r,y) +
rEAd -

1

By Danskin’s theorem (see e.g. [Ber99, Proposition B.25]), we have Vo*(y) = r* € A,
where r* is the optimum in (9.6). For the KKT conditions to hold, we must have for some
A: R — R (the Lagrange multiplier associated to the equality constraint of the simplex):

yi+(rH)9 ' =A(y) forallie [d].

The Lagrange multipliers associated to the inequality constraints disappear by comple-
mentary slackness since necessarily r; # 0. Also we must have A(y) > max;c[4] y; by the
previous equality. In fact, A(y) is the unique solution to

2, (M) =y =1
i€[d]

In summary, Vo*(y) = (A(y)1 - y)eﬁ € Ay4. Differentiating once more, we see that
* 1 . * - * —
Vo' (y) = =g (diag(Vo™ (y)** ™) = (VA(y)) (Vo' (y)**7)7) .

Let M == (VA(y))(Vo*(y)®* 9)T. Observe that M has rank 1 and must be symmetric as the
Hessian itself is symmetric. Further, A(y) is a nondecreasing function of y; for all i € [d],
so that every entry of M is nonnegative. It follows that M is positive semidefinite, and thus

1
l-q

Vo' (y) < diag(Vo* ()27 . (9.7)

Now fix 8 € R% The function s — (s — yi)ﬁ defined for s > max; y; is nonincreasing,
so for all i,

Ay +8) —A@)| <18, and A(y) > 1+y;. (9.8)

Now fix i € [d] and suppose that |||, < I_Tq. We write

)

-q

A(y+5)—/1(y)—5i)F
Ay) - yi

2-q My +6-Ay+9)
1—61' AMy+6)—yi— 6 )

(Vo' (y+8)); T = (Vo' (y)); (1 +

< (Vo' (y)); Texp (

176



9.4. Full proof of Spencer’s theorem

where we used the inequality log(1 + x) > 1. Now plug in the bounds from (9.8):
2-q My +6-Ay+9)
1-q 1+AMy+98)-Ay) -4
kN2 2 2181l
< (Vo' (y); Tex ( :
R A T

<2(Vo'(y) . (9.9)

(Vo' (y+8)); ! < (Vo' (y)); Texp (

Finally, from Taylor’s inequality, under the same assumption |||, < 1_761,

1
lw*(y+6) — 0™ (y) — (Vo™ (y), 8)| < 5 Sup |6TV2w*(y + u6)6|
u€e(0,1]
d

1 R
< EZ(W‘) (y))iz 157,
i=1

where the last inequality follows from (9.7) and (9.9).
For the entropy regularizer and n = 1, it holds that

exp(y)

i = and V%smax(y) < diag(Vsmax(y)) .
i=1 €XPYi

Vsmax(y) =

Therefore for all i € [d],
(Vsmax(y + 8)); < (Vsmax(y)); exp(2 /8]l ,

and we conclude in the same way as for the £;-regularizers.

For general 1, observe that Vo, (y) = Va);’l(ryy) and Vza)j‘b,7 (y) = ryVZw;,l(r]y) (and
similarly for smax;). Therefore, the same argument based on Taylor’s inequality gives the
desired result as long as || 8|, < 18;;1 for g, and ||| < % for smax;,. ]

Remark 9.13. This proof gives an analytic explanation for why we might prefer ;-
regularization to negative entropy regularization in certain situations, although the ap-
proximation error from Lemma 9.11 is worse (for the same value of 1). Observe that a
typical entry V; of the gradient is much smaller that 1. Hence, £;-regularization can be
advantageous whenever we can leverage the fact that V?_q is typically much smaller than
V. This type of tradeoff has been applied both in the bandit literature [AB10] and for graph
sparsification [ALO15]. As we will next see, this is also the case in Spencer’s setting.

9.4. Full proof of Spencer’s theorem

We now give a complete proof of Spencer’s theorem in the general case where the matrix
has d rows and n columns. Our choice of g € (0,1) in the £;-regularization is going to
depend on the ratio d/n.
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Theorem 9.14. Let n < d. There is a deterministic algorithm running in polynomial time
that for each A € [-1,1]™", finds x € {+1}" such that

n

2d
[Ax][o nlog( )

We start by proving the following lemma, which will allow us to find an update vector
that does not increase too much the £;-regularization of the maximal coordinate when
there are k active coordinates remaining.

Lemma 9.15. Let4 < k < 2d — 2, uy, ..., uy be unit vectors in R and V € A,. Consider

M := Z VY]
There is a subspace S of dimension at least 2 such that for allv € S,
(v, Mv) < 8k77%||o]|5.

Moreover, this subspace can be found in polynomial time.

Proof. Without loss of generality, suppose that V; > ... > V. Let

k
Si = {veRk:(v,ui>=0foralli=1,...,{51—1}.

Observe that Vl-k-l < %, so forall v € Sy,
2

1-q d
2
0" Mo < (E) Z Vi, 0)2 . (9.10)
i=1
LetR = ),y Viuiu;r and consider an orthonormal basiswy, ..., w; of S; such thatwlTRwl <

.. < w;,er{z. Select S to be the span of {w;,w,}. Observe that

in‘TRWj = Zd:ViZ(:(wj,ui)z <1.
=1 =

i=1
Thus, by an averaging argument, it holds that

1 2
T 2 2
v Ro < {,_—1||0||2 < m”””z

for all v € S. We conclude by combining with (9.10) and using the assumption on k. [
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9.4. Full proof of Spencer’s theorem

Proof of Theorem 9.14. Up to doubling the number of rows, we apply Remark 9.2 to reduce
to the case where A satisfies for all x € {—1,1}", ||Ax||OO = maxe[q] (AX);.

We set the parameter L of Algorithm 4 to be L := Where q and n are the parameters
of the £;-regularizer to be fixed later.

We now describe our construction of oracle(A, x(t)) with F(t) being the set of active
coordinates of x(¢) and k = k(¢t) := |F(¢)|. To simplify notations, we write x = x(t) and
F = F(t). Observe that ||Ad||c < n||8||. Hence, by Lemma 9.12, there exists V € A, such
that for all update § € R with || 8| < L,

an(Alx+8)) = w3, (Ax) < (V. A8) + —— Z VIUA, 8)? .

By assumption, 2’ jcp Ai ; < k, so we can apply Lemma 9.15 to get a 2-dimensional subspace
S such that for all 6 € S,

16115

sz UA;, 8) < e (9.11)

The second-order term is invariant if we change é to —4&, but the first-order term changes
sign. We return from oracle(A, x(t)) the subspace S intersected with the halfspace {8 €
R":(ATV,8) < 0}.

Now we switch to the global analysis of Algorithm 4 and estimate what is the total
discrepancy incurred over the whole walk. Assumption 9.4 is here satisfied for C = 3, so
since the entries of A are bounded, the last step of Algorithm 4 only changes the discrepancy
of the final coloring by an additive constant.

Denote by fj the sum of the #,-squared norm of the update vectors starting from the
point where there are at most k unfrozen coordinates remaining. Recall that we always
choose our update vector orthogonal to the current position, so that f; < k. We now sum
by parts the main term of the increases (9.11) over the execution of the algorithm,

C Be—Br-1 P q, IL i 0.12
sz e Z'B" A (k+1)1q sn Zk - 01D

Thus, by (9.12) and Lemma 9.11, the final coloring x(T') satisfies

di~1
s

A% (T) |0 < @}, (Ax(T)) < a ai-9)

The result follows by setting
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At this point, it is worth looking at what happens in this proof if we replace the £;-
regularizer with the entropic regularizer. For simplicity, consider the case where d = O(n).
While the constant cost is only log n/n, we are not able to win anything in the local update
as in Lemma 9.15 and we would get an nn loss in the potential during the walk. Optimizing
over 1 would give discrepancy +/nlogn. Negative entropy regularization in this context
corresponds merely to a derandomization of the Chernoff and union bound argument.

In fact, one could repeat the same analysis by replacing the regularizer by a general
function of the form ¢(r) = >;<; ¢(r;) for some convex, non-positive function ¢ : R — R.
Under additional conditions on ¢ (for example the fact that x — x¢”(x) is non-increasing)
one would obtain a discrepancy of

0 J—ngo (%)Z(p”k(%) . (9.13)

With this bound established, we can quickly verify that setting ¢ to be the negative entropy,

we obtain ¢(1/n) = —logn/n and ¢”(1/k) = k, which immediately recovers a discrepancy
of O(y/nlogn).

Given this expression in (9.13), it appears that we can derive the best possible regularizer
by solving a differential equation. Since there is no silver bullet for such problems, one
can simply test various elementary functions. Setting ¢(x) = —x7 for 0 < q < 1 we verify
the required condition and obtain ¢(1/n) = —1/n9, and ¢”(1/k) = q(1 — q)/k*"9, which
removes the logarithmic factor for constant q.

Remark 9.16 (Spherical discrepancy). A slight variation of the same algorithm, which
does not freeze variables, automatically achieves optimal bounds for spherical discrepancy.
This setting is a relaxation of the Komlos problem (see Chapter 10), where the columns of
the input matrix are vectors with at most unit #,-norm, but the sought coloring only has
an f;-norm constraint i.e. ||x||; = v/n, rather than x € {—1, 1}" [JM20]. The key difference
between this setting and that of Komlos is that we are not forced to lose degrees of freedom
by freezing variables, so throughout the entire execution of the algorithm we have ©(n)
degrees of freedom to update the partial coloring.

To show this, we simply observe that at all times there is an update that does not increase
the discrepancy of rows with large global ¢, norm, which represent only at most a constant
fraction of the entire set of rows, by Markov’s inequality. The rate of increase in discrepancy
entirely depends on the #,-norm of the rows of the underlying matrix (restricted to the
unfrozen variables, which in this case are all the variables). Following through with the
same argument we used for Spencer, we obtain discrepancy O(1).
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9.5. Matrix discrepancy

9.5. Matrix discrepancy

In this section, we extend our discrepancy minimization framework to the matrix setting.
Specifically, we consider objectives of the form

n
Fx) = > xAil,
i=1
where A;, ..., A, € R*? are symmetric matrices and ||-|| is a matrix norm. We focus on

the spectral norm, which generalizes the f,,-norm for vectors. Our regularization-based
approach extends naturally to this setting.

We study a matrix generalization of Spencer’s theorem, in which the A; are arbitrary
symmetric matrices with bounded spectral norm. When the A; are diagonal, we recover the
classical Spencer setting. The matrix Spencer conjecture posits that an O(+/n) discrepancy
bound continues to hold even when the matrices do not commute.

Another key application of matrix discrepancy bounds is the construction of graph
sparsifiers, as previewed in §1.1.3. In this case, the matrices A; are normalized Laplacian
matrices of individual edges. The construction of [BSS14] has been recovered in [LWZ25]
using our framework.

9.5.1. Background on matrix discrepancy

We denote by ||-||, the spectral norm of a matrix, i.e.,

[Allz =~ max (x, Ay) .
lxll,=lll,=1

Conjecture 9.17 (Matrix Spencer conjecture [Zou12]). Let Ay, ..., A, € R™" be symmetric
matrices such that || A;||; < 1 for alli € [n]. Then there exists x1, ..., x, € {—1, 1} such that

n
2w
i=1

One obvious difference between the matrix Spencer conjecture and Spencer’s theorem

=0(vn). (9.14)

2

is that the left-hand side of (9.14) corresponds to an infinite (or, after discretization, ex-
ponentially large) number of constraints. When the matrices A, ..., A, have a common
eigenbasis, then the problem effectively reduces to bounding only n quadratic forms (one
for each of the common basis elements), and so we recover Spencer’s theorem as a special
case of this conjecture.

There are other ways in which matrix discrepancy behaves differently to the vector dis-

crepancy, as the following example shows. A similar construction independently appeared
in [DJR22, §6.2].

181



Chapter 9. Spencer’s Theorem via Regularization

Example 9.18 (The “matrix Komlds conjecture” is false.). Let G be the star graph on n + 1
vertices and let A; = (e; — e,41)(e; — eny1) T be the Laplacian matrices of the n edges of G
(here (ey, . .., e,+1) denotes the canonical basis of R"*!). Note that the A;’s satisfy || A;||f = 4.
By analogy with the Komlés conjecture, one might expect that the bound on the Frobenius
norm implies the existence of much better colorings of the A;’s than those guaranteed by
Conjecture 9.17. However, this intuition is false, and in fact, Conjecture 9.17 is tight on this
example.

This is because for any x € {—1, 1}", the first n coordinates of }; x;A;e,+1 are xy, . . ., Xy,
which certifies that ||Zl | XiA; ||2 lx||2 = v/n.

Random coloring

Picking xi,...,x, uniformly at random comes within a +/log factor away from the
conjecture:

Proposition 9.19. Let Ay, ..., A, € R™" be symmetric matrices such that || A;||2 < 1 and

rank(A;) < r. Sample a random coloring xy, . .., Xy bid {—=1,1}. Then,

E inAl = O(+/nlogr).
i=1 2

Proof. We give a self-contained proof of this fact using the trace method. For any integer p,

n 2
(]E Z XA
i=1

= D Blxw - xien|tr (A Aep) -
i:[2p]—[n]

Forai: [2p] — [n] to contribute a non-zero value to the sum on the right-hand side,

every distinct element among i(1),...,i(2p) have to occur an even number of times. There

are at most n? - (2p — 1)!! < (2np)? such maps. Moreover, by Holder inequality and the

assumptions ||A;||; < 1 and rank(A;) <

2p
< Etr

n

Z x,'Ai

i=1

2

tr (A1) - .- Aizp)) < A llzp - - - NAizpyllzp < 7

Putting everything together, we get

Zx,

which is O(4/nlogr) when setting p = ©(logr), as desired. ]

2np r2P
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The Kadison-Singer problem

We close this background by mentioning another setting in matrix discrepancy, intro-
duced in Weaver’s work on discrepancy-theoretic versions of the Kadison-Singer prob-
lem [Wea04].

Marcus, Spielman, and Srivastava [MSS15] famously showed that there exist universal
constants K > 2 and ¢ > 0 such that for any vectors uj, .. .,u, € R? such that |lu;||, < 1
and ||Zl uiuiT”2 < K, there exists a coloring x € {—1, 1}" such that ”ZixiuiuiT”z <K-e

However, designing an efficient algorithm for finding such a coloring remains an out-
standing open question. Through the discrepancy-sparsification connection, this result is
related to the existence of unweighted graph sparsifiers.

9.5.2. Regularization for matrix discrepancy

We generalize in the natural way the regularization framework from the f,-norm of a
vector to the spectral norm of a matrix. The £;-regularized spectral norm first appeared
in [BSS14] in its barrier (dual) form for ¢ = %, and in [ALO15] in the following primal form:

Definition 9.20. For any symmetric matrix X, let

1
wg(X) = max (R X)+—trR?.
R>=0,tr R=1 q

Remark 9.21 (Dual barrier form). Similarly to the vector case, we can compute the dual
of the optimization problem as

®3(X) = maxmin (R, X) + 2tr RY? + (1 - tr R)
2

R>0 AeR

= min A + max (R, X — AI) + 2 tr R/
AeR R>0

= in A+tr((AI-X)™1).
/1>}gn1ax(x) « )

So, in comparison to the barrier approach in [BSS14, BLV22], where a parameter A has to
be carefully tracked during the analysis, here the barrier is auto-adjusting by balancing the
choice of A with the additive A term.

The dual derivation reveals in particular:

Lemma 9.22. 1
Va);(X) = (Al - X)a1,

where A > Apax(X) is the unique solution to tr((AI — X)ﬁ) =1

Next, we extend the regularization bounds from §9.3.3 to the matrix case.
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Chapter 9. Spencer’s Theorem via Regularization

Lemma 9.23. Let X be a symmetric d X d matrix. Then,

dl
Amax(X) < a);(X) X max(X) +—
q

Proof. Identical to the vector case. ]

Lemma 9.24. There exists a universal constant ¢ > 0 such that for any € > 0, the following
holds. Suppose thatq =1 — 1 for some integery. Let X and A be a symmetric d X d matrix
such that |A||, < ce. Denote G(X) = Vg (X). Then,

OL(X +A) < W (X) +(G(X), A>+1J2’€

Y —k+1
Y (6x)racx) 7 a) .
k=1
Proof. Denoting by 9 the derivative in direction A with respect to X, using the rule for

1
matrix differentiation of Z +— Za1 = Z7V,

—k+1

0G(X) = ZG(X) (OMX) - T-N)G(X) 7

Moreover, by the constraint on A(X) that enforces that G(X) stays in the simplex, we have
0 =dtr G(X) = tr(dG(X)), so that

(9.15)

Hence, the quadratic form of the Hessian of »* in direction A is

tr (3G(X) - A) =

—k+1 ) ytr (G(X)Z_qA) 2

tr (G(X)7 AG(X) 7 GO0

<

D= T

tr (G(X)YAG(X) = ) .

T
n

To make sure that there is no contribution of higher-order terms in the Taylor expansion,
it remains to bound:

Lemma 9.25.

y—k+1 y—k+1
sup tr (G(X+uA)YAG(X+uA) 7 A) (1+¢)tr (G(X)YAG(X) )
uel0,1]

Lemma 9.24 follows from Lemma 9.25 using Taylor inequality. ]
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9.5. Matrix discrepancy

Proof of Lemma 9.25. First applying to Cauchy-Schwarz to (9.15), we have |0A(X + uA)| <
IA|l,, so A changes by at most ||A||, on the line from X to X + A. From there, we get that
G~'/Y has Lipschitz constant (for the spectral norm) 2 ||A||, on that interval. Whenever
this is a small enough constant, we can expand

k k 1 1 1\ —k
G(X +ul)’ = G(X)" (1 + (G(X +uh) T — G(X)_?) G(X)?)

k
Under the assumption on ||A||, being a small enough multiple of ¢, we get G(X + uA)r <

—k+1 —k+1
G(X)7 (1+£) and similarly G(X +uA) 7 < G(X)'7 (1+£). Finally, the result folllows
by a successive application of both PSD inequalities to the trace term. []

9.5.3. The matrix Spencer problem

A series of recent works on low-rank instances of the matrix Spencer problem [HRS22,
DJR22] culminated in a proof [BJM23] that Conjecture 9.17 holds under the additional
assumption rank(A;) < n/polylog(n) for all i € [n]. This proof applies a deep result from
random matrix theory [BBvH23]. In this section, we highlight connections between that
approach and our regularization framework, which may enable a similar implementation.

The strategy in [BJM23]
[BJM23] applies as a black-box the following result to find a good partial coloring:

Theorem 9.26 (Refined Non-Commutative Khintchine [BBvH23]). Let A,..., A, be sym-
metric d X d matrices and g ~ N(0,1,). Then,

2
+ polylog(d) -
2

1
2

Cov

E <

z”: 9iAi
i=1

n
W
i=1

n
giA;
i=1

2 2

A weaker interpretation of Theorem 9.26 yields an improved bound on the discrepancy
for a random +1 coloring when the matrices Ay, ..., A, have small covariance parameter.
The key observation in [BJM23] is that when the A; have low rank, the covariance matrix
of }; giA; has small spectral norm after projecting out a few adversarial directions.

It is plausible that matching the guarantee of Theorem 9.26 for a random coloring within
our regularization framework, combined with orthogonality constraints during the sticky
walk, could recover the result from [BJM23].
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Chapter 9. Spencer’s Theorem via Regularization

The proof of Theorem 9.26

The proof of Theorem 9.26 constructs an interpolation path between }; g;A; and an
idealized model whose spectral norm matches the standard deviation proxy from matrix
Chernoff bounds — crucially, without incurring an extra 4/log d factor.

We now sketch how one might try to analyze the performance of a random coloring
matching Theorem 9.26. The {;,-potential that matches matrix Chernoffis ¢ = 1 —

logd
Consider the potential
n
O(x) =w" Z x;A
i=1
Then by Lemma 9.24, the second-order contribution from perturbing x to x + J is
Y y— k+1
(8.V°0(x)8) = ) tr (GYAG A) , (9.16)

k=1

where y =logd, A = )1, 6;A;, and G = VP(x).
The goal is to find a direction é such that (9.16) is small. A naive approach, ignoring
non-commutativity, uses the following:

Lemma 9.27. Let A be symmetric and G be positive semidefinite. For all &, f > 0, we have
tr(G*AGPA) < tr(G*FA?).
Remark 9.28. The gap in the inequality,
I,(G,A) = tr(GA?) — tr(G*AG™®A),

is known in quantum information theory as the Wigner—Yanase-Dyson (WYD) skew infor-
mation. Lieb [Lie73] showed that I, is concave as a function of G when 0 < « < 1. It would
be interesting to better understand the maximizers of I, (-, A) when G is viewed as a vector
in the simplex. For example, when a = 1/2, the method of Lagrange multipliers implies
that any maximizer satisfies G; oc (34 Gl/ 2Az )2 foralli € [n].

Proof. Without loss of generality, assume G is diagonal. Then,

n

tr(G*AGPA) = > GGP A2

=gy
i,j=1
_ a+fip2 B By A2
Z Gz - = Z(G GE)(Gh - GI)AY,.
i,j=1 l] 1
The first term is tr(G**#A?), and the subtracted term is always nonnegative. ]
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9.6. Summary

Applying this lemma bounds (9.16) by
(8, V*®(x)8) < ytr (GTIA?) .

This makes the expression easier to bound, but the prefactor y = log d ultimately causes
a 4/logd loss. The insight from [BBvH23] is that such trace inequalities are too loose:
the idealized model satisfies them strictly, with a dimension-dependent improvement.
Developing a regularization-based proof that tightly bounds (9.16) remains an intriguing
open problem.

High-rank instances

Finally, we note that the low-rank assumption, while technically convenient, can seem
artificial. Many instances relevant to applications have full rank. For example, Pravesh
Kothari communicated the following high-rank instances:

Problem 9.29. Let Py,..., P, be n X n permutation matrices. Show that there exists
x € {—1,1}" such that
n
2P
i=1

It remains unclear whether our algorithm from §9.4 (that is, Newton’s method with an

~

& -regularizer) can solve Problem 9.29.

9.6. Summary

We introduced a new framework to prove discrepancy bounds using Newton’s method on a
regularized discrepancy objective function. We showed how to recover Spencer’s theorem
and highlighted possible avenues for the matrix Spencer problem. In the next chapter, we
will see another application of this framework.
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CHAPTER 10.

Discrepancy of Sparse and
Pseudorandom Vectors

Spencer’s bound characterizes the worst-case discrepancy of #,-bounded vectors. Its
extremal instances such as Hadamard matrices have dense entries. What if the input has
instead sparse or multiscale entries? Do such constraints make vector balancing fundamen-
tally easier? The Beck—Fiala and Komlos conjectures posit that this is the case.

In this chapter, we adapt our framework to prove new bounds on pseudorandom instances
of the Beck-Fiala and Komlds conjectures. For rotation matrices, our result improves on
the classical result of Banaszczyk [Ban98]. Theorems 10.5 and 10.6 are the main results
of this chapter. We also discuss alternative approaches based on duality and compression
arguments, and relate them to our framework.
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Chapter 10. Discrepancy of Sparse and Pseudorandom Vectors

10.1. Introduction

The main conjecture of interest for this chapter is the following.

Conjecture 10.1 (Komlos conjecture). There exists a universal constant K > 0 such that for
anyuy, ..., u, € R? with ||u;||, < 1 for each i € [n],

(0]

Methods based on iteratively finding good partial colorings achieve a bound of K =
O(logn) [Spe85]. The state-of-the-art is a O(+/log n)-bound due to Banaszczyk [Ban98].
It is also known that this bound can be achieved constructively, using a random walk
guided by SDPs [BDG19, BG17], the “Gram-Schmidt walk” algorithm [BDGL19], and a
derandomization of it based on the multiplicative weights method [LRR17]. On the other
side, there has been only limited attempt to try to refute this conjecture, and the best known
lower bound is K > 1+ V2 [Kun23].

In the case where all the entries of all the vectors are on the same scale, we essentially fall
back to Spencer’s theorem. Hence, the key difficulty with Conjecture 10.1 lies in handling
entries of different magnitudes. In fact, the special case where the vectors u; have sparse
{0, 1}-entries was also conjectured by Beck and Fiala [BF81].

Conjecture 10.2 (Beck-Fiala conjecture). For anys = s(n) € N, given any collection of
vectors uy, . . ., u, € {0, 1} where u; is s-sparse for each i € [n],

n

§ XiU;

i=1

min
xe{-1,1}"

< O(Vs).

(0]

There, the state-of-the art is O(min(s, 4/s log n)) [BF81, Ban98], where the second bound
follows from the result of Banaszczyk for the Komlos conjecture mentioned earlier.

Our contributions. Recently, Potukuchi [Pot20] gave a new bound for the Beck-Fiala
conjecture depending on a pseudo-randomness parameter.

Definition 10.3. Let A € R he a matrix. Define

A(A) := sup ||A®20||2,
s

where (A®?);; = A?j foralli € [d],j € [n].
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10.1. Introduction

In the special case where A is the adjacency matrix of a s-regular graph, A(A) is the
second largest eigenvalue of A and is bounded by s. As observed in [Pot20], A(A) is
typically much smaller than this worst-case bound when A is the incidence matrix of a
random regular set system. We will also check in §10.3 that this still holds for natural
random instances of Komlds conjecture.

Theorem 10.4 (Theorem 1.1 in [Pot20]). Letuy,...,u, € {0,1}¢ be s-sparse vectors and
let A be the d X n matrix with columns uy, ...,u,. There is a randomized, polynomial-time
algorithm outputting x € {—1, 1}" such that

n
§ XiU;
i=1

The proof of Theorem 10.4 is based on iteratively running the random walk algorithm of

< O(Vs + A(A)).

o

Lovett and Meka [LM15]. We say that a discrepancy constraint j € [d] is pseudo-random at
a given time if the £,-mass of that constraint restricted to active coordinates has decreased
proportionally to the rate of active coordinates at that time. Potukuchi shows that (1) we
can make progress on the pseudo-random constraints matching the O(+/s) Beck-Fiala
bound, and (2) when A(A) is small, constraints with large enough active £,-mass are pseudo-
random. Finally, the bound on the discrepancy of the rows after their active #,-mass has
become small crucially uses the fact that the instance is {0, 1}-valued.

Our contributions in this chapter are new discrepancy bounds that generalize both
Theorem 10.4 and Banaszczyk’s bound [Ban98, BDG19]. Moreover, they hold both in the
Beck-Fiala setting and in the Komlos setting. We apply these results in §10.3 to deduce
random versions of Komlos conjecture. Next, we state the two theorems that we will
prove in the next sections. For simplicity, we focus on the case of square matrices (d = n),
although we naturally expect the techniques to generalize to the d > n case.

Theorem 10.5 (Bound for pseudorandom Komlés instances). Let A € R™" be such that
each column has t;-norm at most 1. Then there is a deterministic, polynomial-time algorithm
to find x € {+1}" such that

|Ax||co = O(1 + \A(A) logn) .

Theorem 10.6 (Bound for pseudorandom Beck-Fiala instances). Let A € {0, £1}™" be such
that each column has at most s nonzero entries. Then there is a deterministic, polynomial-time
algorithm to find x € {+£1}" such that

| Ax||co = O(Vs + min(+y/A(A) log n, 1(A))).

As immediate corollaries, Theorem 10.5 implies Komlos conjecture when A(A) < @
Theorem 10.6 implies Beck-Fiala conjecture when A(A) < /s + =%~ This strictly improves

logn

and
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Chapter 10. Discrepancy of Sparse and Pseudorandom Vectors

Theorem 10.4 for Beck-Fiala instances in the regime A(A) € [O(logn), O(s)]. Furthermore,
Theorem 10.5 is the first result for pseudorandom instances of Komlos conjecture.

Remark 10.7. Unfortunately, the mere column-sparsity assumption in Theorem 10.6 does
not suffice to ensure that A(A) < s.! However, as we will see (Remark 10.14), we can
essentially replace A(A) by min(A(A), s) in the analysis. In this sense, our algorithm also
matches Banaszczyk’s bound.

10.2. Proof of the discrepancy bound for pseudorandom
instances

10.2.1. Proof strategy and notations

We now describe our strategy for Theorems 10.5 and 10.6.

We start by giving some idea of how we will use the fact that A(A) is small in our
discrepancy framework. The main insight of [Pot20] is that at any point in time in a
discrepancy walk, we can control the £,-mass restricted to active coordinates of all rows
simultaneously.

Lemma 10.8 (Lemma 2.3 in [Pot20]). Let A € R™" and F C [n] be of size k. Then, for any
constant D > 0, there exists a subset S C [n] such that |S| < k/D? and for anyi ¢ S,

DIV HES % Zn:Afj + DA(A).
j=1

jeF

Intuitively, the term % 2j<n Afj corresponds to the #;-squared-mass we would expect the
row A; to have if the set of active coordinates F were picked at random. The parameter
A(A) gives a bound on the deviation from this random behavior. In particular, the £,-mass
of a row essentially decreases as in the average case as long as it is Q(4/A(A)). We include
a proof of Lemma 10.8 here for completeness.

Proof. Let us denote B;; := A?j forall i, j € [n]. If u € R" is a vector orthogonal to 1, then
by definition we have ¥;(Bj;, u)? < A(A)?||ul|?. Consider u € R" such that u; := 1 — £ if

j€Fandu;:= —% if j ¢ F. Then u is orthogonal to 1 and ||u||? < k. Hence,
2| 245 A <Ak
i=1 \ jeF j=1
The result follows from a simple counting argument. ]

1 For example, consider a vector v with half +1 and half —1 entries, take the first row of A to be v and fill the
other rows with zeros. A has one nonzero entry per column but ||Av||, = vn||v||2.
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10.2. Proof of the discrepancy bound for pseudorandom instances

Roadmap of the proof

In order to prove Theorem 10.5 and Theorem 10.6, we will track two different types of
potential functions, depending on which of the main term or the error term in Lemma 10.8
dominates. §10.2.2 will be devoted to bounding the discrepancy incurred in the regime
where the row mass decreases as if the input were random. The analysis here will mirror
our proof of Spencer’s theorem. In §10.2.3, we will consider the case where the error term
dominates. There we leverage the fact that the row mass has become small. In this setting,
we will use a potential function that was introduced in [LRR17, Appendix B] to recover
Banaszczyk’s bound with the multiplicative weights update method.

Before starting the proof, we introduce some useful concepts and notations. From now
on, we fix a matrix A € R™" with column #-norm bounded by 1. With the context being
clear, we will write A := A(A). Our algorithm will follow the structure of the meta-algorithm
Algorithm 4, therefore we will use our usual notations: x(t) for the coloring at time ¢, F(t)
for the active coordinates at time ¢, etc.

Definition 10.9. For each row i € [n], we define

fi=mingt>0: Y AL <8l
JEF(1)

In words, t; represents the time at which the i-th row stops behaving as if it were random.
We will write P(t) := {i € [n] : t < t;} for the set of “pseudorandom” rows at time ¢. The
following observation explains what we mean by “pseudorandom” — we can pretend as if
the freezing process decreases linearly the #,-mass of the rows. It is an easy consequence
of Lemma 10.8.

Claim 10.10. Fix any time step t > 0. There exists a subset of rows I = I(t) C [n] such that
1] < % and foranyi € P(t),i ¢ I:

Z A2 < 2|Frft)| ;Afj.

JEF(1)

For any row i € [n], we will track separately the contributions to its discrepancy for
t<tiandt > t;.

Random regime

Similarly to [Pot20], we group together the rows that have similar total ,-mass. For any

re{1,...,[log,nl}, let

R, = {i e [n] :ZAfj = (2r‘1,2r]} .
=1
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We also consider R := {i € [n] : ;1:1 Afj 1}. An easy double counting argument bounds
the size of each R,: |R,| < n2!™" for any r < [log, n]. Our strategy will be to play several
Spencer’s games in parallel (restricted to the rows in R,, for each value of r) and carefully

<
<

allocate some “effective dimension” to each of them at any step of the walk.

We now define 7,; : R” — R”" to be a projection to the coordinates of R, of the
discrepancy of the rows that behave pseudorandomly. Once t > t;, we keep tracking in the
i-th row the same value (A;, x(¢;)). In short, for any x € R" and i € [n],

0 ifi ¢ R,
(mr1(x))i = { (Ai x(t;)) ifi € R, buti ¢ P(t)
(A, x) ifi e R, NP(1)

Now we are able to define our potential functions in the random regime. For any r =
0,...,[log, nl, let

D (x) = w;\/m(”r,t (x)) .
The choice of n, = Vn2!"" as regularization parameter can be justified by the fact that there
are at most n2!™" rows in the r-th group - so this is essentially the smallest value of 7, that
makes the additive approximation error of the regularized maximum O(1) (which is our
target discrepancy in this regime).
Our main lemma states that it is possible to design oracle with a bit of slack in the
dimension requirements, in such a way that all the potential functions &, only pay a
constant amortized increase over the duration of the walk.

Lemma 10.11. There is a construction of oracle(A, x(t)) that always returns a subspace of
codimension at most % + O(1) (with k being the number of active coordinates of x(t) ), such
that for anyr = 0,..., [log, n], ®,7(x(T)) < O(1).

Small row regime

Set n = 1/10% (it will be the parameter of the regularizer in this regime). We define

B € R™" to be the following thresholded version of A: for any i, j € [n], let B;; = A;; if
A?j < m and B;; := 0 otherwise. We will later see that it is sufficient to monitor the
discrepancy of B instead of A.

Recall that at this point of the walk, each row will have effective £,-mass O(A). For
algorithms based on orthogonality constraints, there is not much difference between
having bounded rows and bounded columns, so this justifies patching an algorithm for
Banaszczyk’s setting at this point. We implement the potential function from [LRR17] in
our regularization framework.
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10.2. Proof of the discrepancy bound for pseudorandom instances

Let r;: R"” — R" to be such that for any x € R" and i € [n],
(! (x)), = | (B = (1)) = K Xy By = (8)° i ¢ P(1)
o if i € P(t)

for some constant K > 0 that we will fix in the proof. Finally, we define our potential
function for this regime:
¥, (x) = smax, (7;(x)) .

Our main lemma states we can make this potential non-increasing (and moreover the
subspace dimension necessary for that allows some slack).

Lemma 10.12. There is a construction of oracle(A, x(t)) that always returns a subspace of
codimension at most % + O(1) (where k is the number of active coordinates of x(t)), such that

Yr(x(T)) < ¥o(x(0)).

Remark 10.13. Some intuition for ; comes from the fact that to get a coloring of dis-
crepancy +/Alogn for an input matrix with rows of £;-norm bounded by A, the Chernoft
and union bound argument suffices. If v4, . .., v, are the rows of the matrix, it is essentially
consisting in arguing that when x ~ {+1}” it holds for any 5 > 0 that:

n ”01”2)
log E ex max [(v;, x)|] <logE )» ex v, x)]) <lo exp .
B exp [y max (0u 0| < og Z p(rl{on ) < gZ (

2

LiX5s 2, this might motivate us to look at the softmax of

If we interpret ||Uz||§ as Zjé[ﬂ
{{v;, x) — U(O?Z,x®2>/2}~

We are now ready to prove Theorem 10.5 and Theorem 10.6.
Proof of Theorem 10.5 and Theorem 10.6. We assume without loss of generality that

max (Ax); = || Ax||c
i€[n]

by the usual trick of doubling the rows. We define oracle(A, x(t)) to be the intersection of
the halfspace from Lemma 10.15 and Lemma 10.16, and of the subspace from Lemma 10.17.

On the one hand, Lemma 10.11 implies that for any r < [log, n] and i € R,,

(A, x(t;)) = m7(x(T)); < @7(x(T)) < O0(1).

On the other hand, Lemma 10.12 implies that for any i € [n],

(B.,x(T) — x(1)) —KUZB ((T) = x;(1))* < ¥r(x(T)) < ¥o(x(0) < yAlogn.
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Observe that

n

ZB?j(xj(T) ~x;(t)? <4y BY s A

j=1 =1
Hence, (B;,x(T) — x(t;)) < +/Alogn, and by Lemma 10.19, |[{A; — By, x(T) — x(t;))| <
\/Alogn holds as well. It remains to use the triangle inequality:

1A% (T)]le = O(1 + /A log 1) .

This implies Theorem 10.5 and the first part of Theorem 10.6. For the second part of
Theorem 10.6, simply observe that if A is a rescaled Beck-Fiala instance, namely A;; €
{0,1/+/s} for all i, j € [n], then the condition Y} ;cr(, A?j = O(A) implies by that A; has
at most O(sA) nonzero entries in F(t;), and so X jcr(s,) |Aij| = O(Av/s). In particular, the
time steps t € [t;, T] affect the discrepancy of A; by at most O(A+/s). This shows that the
constructed coloring also has discrepancy O(1 + A+v/s) in this case, which is equivalent to
the second part of the bound in Theorem 10.6. ]

Remark 10.14. One may also recover Banaszszyk’s bound for Komlés (or Beck-Fiala)
instances by repeating the argument from §10.2.3, replacing A by some universal constant
larger than 1 and adding an additional orthogonality constraint to large rows, so that
the algorithm can pretend that the rows all have bounded #;-mass. It follows from our
previous observations on the link between the multiplicative weights update method and
negative entropy regularization that this would be equivalent to the approach for recovering
Banaszczyk’s bound in [LRR17].

The plan for the next few sections is as follows. First, we prove Lemma 10.11 in §10.2.2
and Lemma 10.12 in §10.2.3. Then, we study the consequences of Theorem 10.5 and
Theorem 10.6 for random instances in §10.3.

10.2.2. Discrepancy in the random regime

Our main goal in this subsection is to prove Lemma 10.11. Throughout this discussion, we
fix a small constant ¢ € (0,1/5). Our first lemma describes a construction of oracle that
bounds locally the increase of the potential. This part is very similar in spirit to our proof
of Spencer’s theorem.

Lemma 10.15. Let x = x(t) and k = k(t) := F(t). Let Ry = [log,(32n/k)]. There exists
a subspace S = S(t) C F(t) such that S has codimension at most% and if § € S satisfies
18]l < 1/poly(n),

1 (k2r\ 7
D, (x+ ) — Drp(x) S ur(8) + % (—) 1815 foranyr < Ry
n
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10.2. Proof of the discrepancy bound for pseudorandom instances

and
O, (x+6) =, 4(x) foranyr >Ry

where {u,: r < Ry} are linear forms.

r &
Proof. Foranyr =0,...,Ry, letk, = k.(t) := C (’%) k be the effective subspace dimension
devoted to rows in the r-th group, where C; = C;(¢) is chosen so that 3. .z k, < k/8.

Let S’ be the orthogonal complement of the span of the large rows and the row in I,
namely (U,~x {Ai : i € R;})*. These rows all have total f;-squared mass larger than
2R=1 > 16n/k, so there are at most k/16 of them and thereby S; has codimension at most
k/16.

Applying Lemma 9.12 to r < Ry, for some V, € A, it holds for any § with [|§]|c <
1/poly(n) that

3
ro(x+8) = pi(x) <ur(8) +2Vn2'" ' VE(A;8),
i€R,.NP(t)

for some linear form u,: R* — R.

Let I, be the set of coordinates that are in the top k, /2 entries of the gradient V,. We
define S, to be the intersection of the orthogonal complement of the span of the rows in
I U I (where I is the set of rows from Claim 10.10 that satisfies |I| < k/16), and of the top
k,/2-dimensional eigenspace of

3
2 T
Z Vr,iAiAi
i€R,NP(1),i¢IVI,

over RF® Thenif 8 € S,,
q)r,t(x + 6) - (Dr,t(x) - ur(s)

8||2+/n 2
_ N18llzvm Soov Y a (since § € S)

22k, I€R,NP(t),i¢IVI, JEF(t)
18113 N o e
s k,\/n2: Z Ly ZA,.J. (by Claim 10.10 and i € P(t),i ¢ I)
rNIE2 g aP(D),iglul,  j=1
S||2k2z 3
< Il Z Vi (since i € R,)
kr \/ﬁ i€R,NP(t),igIVI,
||8]2k22 o
S—5 — (since i ¢ I,,)
kin
1-3¢
1 (k2" z
< P (—) ||6||§ ) (by definition of k)
n
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Finally we set S := §" N (,<g, S;- One can check that S has codimension at most % + % +

k
ZrSRO kr < 4 ]

The following step is a trick to handle the first-order terms. Indeed, a caveat is that
unlike in Spencer’s setting, we cannot afford to move perpendicularly to all the gradients
simultaneously.

Lemma 10.16. Fix x € R". Let S be a subspace such that for any 8 € S andr < Ry,

1-3¢
k2" 2
D+ 8) = Bpy(x) < (8) + ( : ) £

for some linear forms {u,: r < Ry}.
Then for any & € S, at least one of +8 or —6 satisfies that for anyr < Ry,

1 (k2"\*
2 8) - 0 5 (2] 191

Proof. By picking ¢ < 1/5, we have forany § € S

D@+ 8) = @)~ ur(8) < (5) 815

r<Rgy

By a trivial upper bound, this means that for any § € S,r < Ry,

9=¢r —é&s ks 2
(@ (x+ 8) = @p(x)) < D 27us(8) + (n) 18113

S<R0
In particular, by picking the signing +§ that satisfies .,z 27 us(+6) < 0, we get that for

any r < Ry,

1 (k2\*
2 8) = 0,00) < (2] 812, =

Proof of Lemma 10.11. By combining Lemma 10.15 and Lemma 10.16, we know that at any
step where there are k active coordinates remaining, the potential ®,; increases by at most
r £
1 (ki) 18112 if < 1+log,(32n/k) and is unchanged for r > 1+ log,(32n/k).
Now fix any r < [log,(n)]. By a similar argument to the one in the proof of Theorem 9.1,

after letting S be the £;-squared mass injected into x starting from the first time for which
there are at most k active coordinates remaining, we can upper bound

o\ £ 64n27T
0,2(x(1) - 2r0(0) < (%] ) bbis o).

The claimed bound follows after noting that our choice of parameters for the regularizers
also implies @, ,(0) = O(1). o
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10.2.3. Discrepancy in the small row regime

Our next goal is to prove Lemma 10.12, which is a direct consequence of the following
lemma.

Lemma 10.17. Fixanytimet and letk := |F(t)|. Thereis a subspace S ofRF(t) of codimension
at most % + O(1) such that
¥ (x+ ) < ¥(x)

holds for any & € S with |||« < 1/poly(n).

Before proving it, we recall the following well-known result (see for example [BDG19,
Theorem 8] or [LRR17, Lemma 21]):

Lemma 10.18. For any wy,...,wp = 0, B € R™" and a € (0,1), there exists a subspace S
of R" of codimension at most an such that for all § € S,

2
1
S (ZBi,.(sj) S Y s o)
ism Jj<n o ism Jj<n

Proof. Up to considering \/w;B;, assume without of generality that w; = 1 for all i € [m].
Moreover, the statement is invariant if we remove the zero columns from B and replace

6j by ”;ﬁ for all j € [n]. Therefore we can also assume that all columns of B have unit

Euclidean length.

2
Now the right-hand side is just ”(ZHZ and the left-hand side is 6" Y};,,, BiB] 8. We can

simply choose S to be the subspace of vectors § orthogonal to the top an eigenspace of the

linear operator };,,, B;B;, which has trace n. The result follows a counting argument. []

Proof of Lemma 10.17. To avoid overcharging notations we drop in this proof the depen-
dencies on t and let x := x(t), F := F(t) and P := P(t). When ||§||c < 1/poly(n), we can
apply Taylor expansion (Lemma 9.12) — for some V € A,:

2
¥i(x+6) — ¥ (x) < Z Vi ZBijch +1 Z % (Z Bz‘j5j)

i¢P JEF i¢P JEF

2
— ZKU Z V; Z B?jxjﬁj + 2K2173 Z V; (Z Bl~2jxj'5j)

igP jeF i¢Pt jeF
2
~Kn ) Vi Y BLS+ K YV, (Z ij(sf) .
i¢P JEF igP JjeF

First, note that the last term scales as 5;% so we can make it negligible by picking ||§||e <
1/poly(n).
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We consider the subspace S; of codimension at most 2 that is the orthogonal complement

of the span of the 2 vectors from the linear terms in § in the previous right-hand side.
1
FE
codimension k/4 such that any § € S; satisfies the following two conditions:

2
)3, (Z Bs| <o YW Y B (102

Also, by applying Lemma 10.18 to two different matrices with @ = 3, we can find S, of

i¢P JEF igP JeF
2
2K*p* > Vi (Z Blx;d;| < 16K%n® > Vi »" Bjxio}. (10.3)
i¢P JEF i¢pP JEF

Note that whenever (10.3) is satisfied, it also follows from |x;| < 1 and the assumption
2 1

2
2K2773 Z V,' (Z Bl~2jxj'5j) < n Z Vl' Z BIZJ(SJ2 .
i¢P JEF i¢P JEF

Let S := §; N S. S has codimension at most k/4 + O(1) by construction. Picking K := 9, we
get

¥ (x+ ) —¥i(x) <0,
for any & € S satisfying |||« < 1/poly(n). O

Finally we bound the error of replacing A by B.

Lemma 10.19. For anyi € [n],

[{Ai = Bi, x(T) — x(;))| < yAlogn.

Proof. Fix i € [n]. Let F := F(t;) be the set of active coordinates when the i-th row becomes
small. Since ¥ jcp A, = O(A), it must be that

|{j € F: A;j— B;j # 0}| < logn.

Therefore, by Cauchy-Schwarz,

(A = By, x(T) = x(t:))] < ) 14y - Byl < Vlogn | > (4;; = Byj)? < {Alogn. [

JEF JjEF
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10.3. Application to random instances

10.3.1. Random orthogonal matrices

The next consequence of our bound for pseudorandom instances is that Komlés conjecture
is true for random rotation matrices. An equivalent geometric way to state our result is the
following: there exists a universal constant C > 0 such that when we randomly rotate the
n-dimensional hypercube around the origin, with high probability there exists a corner at
{--distance at most C from the origin.

Rotation matrices appear to be hard instances for proving the Komlds conjecture, as
present proof techniques merely manage to match the discrepancy bounds to those for
the suprema of Rademacher processes involving the transpose matrix. Improving beyond
O(+/logn) discrepancy for orthogonal matrices would therefore provide new techniques
for treating Rademacher/Gaussian processes for structured matrices. A first step in making
progress on this front would therefore be to consider random orthogonal matrices.

What we mean by random rotation is a random matrix distributed according to the Haar
measure on the orthogonal group O(n). The Haar measure is a natural generalization of
the uniform distribution. We can just think of the sampling as picking the matrix columns
to be i.i.d. standard Gaussians in R" (which will be linearly independent almost surely),
and orthonormalizing them with the Gram-Schmidt process.

We explicitly computed small moments of the entries of such a random matrix with the
help of the Maple package IntHaar [GK21].

Claim 10.20. Suppose A is distributed according to the Haar measure on O(n). Then,

1 105
ElAn] = nn+2)(n+4)(n+6)°
9
4] _
Bl = i omre

n®+4n+ 15
nn+2)(n-1D(n+1)(n+4)(n+6)
Corollary 10.21 (Komlos conjecture for random rotations). There is a deterministic algo-
rithm that given a Haar-distributed random matrix A on O(n), finds with high probability
x € {£1}" such that

E [A%IA%ZAglAgz] =

[Ax]leo = O(1) .

Proof. Our proof is inspired by the observations in the proof of [Ber01, Theorem 1] for the
Haar measure on the unitary group. Consider B := (A®%)T A®%, Using Claim 10.20, we see
that
2 _ 2 42 42 42
BuB’= ) B|ajaialal]

ij* %l
1<i,j,k,I<n
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=n’E [A},] + 2n*(n - 1) E [A},AL,]| + n®(n — 1)°E [A],A},A% AZ, |

~1+0(1).

Note that 1 and A(A)? are eigenvalues of the positive semidefinite matrix B, so 1+ A(A)* <
tr B, and EA(A)* < O (%) by the previous estimate. By Markov’s inequality, A(A) < @
with high probability, and we conclude by applying Theorem 10.5. [l

10.3.2. Random Gaussian matrices

Next we show that for matrices with random Gaussian entries, the corresponding A pa-
rameter is small. Without loss of generality, we assume that the input matrix is square,

as otherwise (in the regime m > n) we can add extra columns while only worsening A.
1

L so that all column

We assume that each entry is sampled i.i.d. from N(0, 0?) with o =
norms are tightly concentrated around 1, i.e.

2
. ne
Pr(l-e< |[A3 < 1+¢) > 1—2exp(—?) ,

which follows from standard concentration bounds.

Claim 10.22. Given a random Gaussian matrix A € R™" where entries are i.i.d. Gaussians

N(0, 0%) witho = %, one has that

|A%ull, <t
max ————— < —
@n=0 |lulla  +n
with high probability.
Proof. Let B := A®* — % Observe that

max  ||A®?u|l; < max ||Bu]l,.
[lull2=1,{u,1)=0 [luel,=1

Now, B is a matrix with i.i.d. entries such that EB;; = 0, EB% = O(1/n®) and EB}, =
O(1/n%), so by a standard result from random matrix theory (see e.g. [Ta0o12, Theorem
2.3.8]), it holds that n||B||,, = O(+/n) with high probability. It readily follows that A(A) <
1/+/n with high probability. O

This shows that by applying Theorem 10.5 random Gaussian matrices have discrepancy
O(1).

Corollary 10.23. Given a random Gaussian matrix A € R™", where entries are ii.d.
Gaussians N(0,0?), o = % there exists a deterministic algorithm that finds a coloring
x € {x1}" such that || Ax||. = O(1).
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10.4. The compression approach

An interesting special case of the Beck-Fiala conjecture is when the matrix A is the
adjacency matrix of some s-regular graph. It turns out that in this setting, a folklore
argument based on Lovasz Local Lemma implies that there exists a coloring with discrepancy
O(+/slogs). Although there is an algorithm to construct such a coloring in polynomial
time, it is not captured by the iterative framework we introduced in this paper. It is in our
opinion a great open problem to unify those two lines of work.

10.4.1. The Lovasz Local Lemma algorithm

To formulate the problem more precisely, we provide a new streamlined and self-contained
analysis of the algorithm matching the bound based on Lovasz Local Lemma. In particular,
it highlights the differences with the sticky walk approach. Our inspiration is an argument
of [AIS19] for finding a satisfying assignment of bounded degree k-SAT instances.

Theorem 10.24 (Folklore). There is a randomized algorithm that, given A € {0, 1}"™" with
at most s nonzero entries per row and at most s nonzero entries per column, finds with high
probability in polynomial time a coloring x € {£1}" such that || Ax|| = O(~/slogs).

Proof. We will call a row bad (w.r.t. an implicit full coloring) when its discrepancy is larger
than 44/s log s. We consider the following algorithm. First, we generate a uniformly random
coloring. Then we repeat ¢ times the operation of picking the bad row with smallest index
(unless there is none, in which case we stop) and resampling all the variables appearing in
it.

Since each constraint contains at most s variables and each variable appears in at most s
constraints, any constraint has nonempty intersection with at most s other constraints.

Define C; to be the set of all ordered sequences of t constraints that have nonzero
probability to be picked in that order by the algorithm. The execution of the algorithm can
be described as a rooted forest of t vertices, each one of these corresponding to a constraint
that is picked. When a constraint is picked, it can create at most s* children, each of which
corresponding to a constraint of lower index that intersects it and became bad after the
resampling.

Therefore, we can encode an element ¢ € C; by giving {c; : Vj € {1,...,i = 1},¢; < ¢},
and a rooted forest on t vertices, each (except the roots) with labels between 1 and s?. It
follows from standard combinatorics that

2t
[AIRS 2”( . )sZt =2"(2s)*" .
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Fix a sequence of resampled constraints ¢ € C; and a sequence of t + 1 colorings
uy,...,up1 € {£1}". ¢ and u can correspond to a potential execution of the algorithm only
if u; is u;41; where the c;-th constraint of u; is bad. Applying Chernoff bounds, we see that
there can be at most 2°/s® such u;’s. It follows by induction that there are at most 25! /s%
possible sequences uy, . .., u;. On the other hand, for any fixed uy, ..., usq, ¢4, ..., ¢, the
probability that the algorithm follows exactly this sequence of constraints and colorings
is at most 27%. Hence, by a union bound, the probability that the final coloring that the
sequence of constraints is cy, .. ., ¢; is at most 2ns=8t,

To conclude, we can apply another union bound to get that the probability that the
final discrepancy is larger than /2slog s is at most |C;|2"s~%, which is =) for some
t = n0W, O

Instead of working with fractional colorings, here we walk directly in the space of full
colorings. While the row-sparsity assumption is not really restrictive in the sticky walk
framework (as we can always pick update vectors orthogonal to large rows), it seems
crucial for arguments based on Lovasz Local Lemma.

10.4.2. Duality and compression

We believe that developing a proof technique capable of recovering both Theorem 10.24 and
Theorem 9.1 is a compelling research direction — perhaps even equivalent to resolving the
Beck-Fiala conjecture itself. Here, we outline a promising approach based on compression
arguments.

In the context of the matrix Spencer problem, [HRS22], building on [ES18], proposed a
method that proceeds by refuting the existence of dual certificates for a linear programming
relaxation of the partial coloring problem. The idea is as follows: fix a discrepancy target
A, and define the polytope of good partial colorings,

K(A) = {x € [-1,1]" : ||Ax||, < A}.

Now, fix a candidate coloring x¥ € {—1, 1}", and consider the linear program in variable x:

1 .
- ) . 10.4
- xggl?()i) (x, x) (10.4)

If the optimum of (10.4) is large for some guess X, then we have found a good partial
coloring. Otherwise, if the optimum is small, then the dual of (10.4) yields a certificate
that can be used in a communication protocol to compress information beyond what is
information-theoretically possible.

This compression-based duality argument can be used to recover Spencer’s theorem.
Moreover, the structure of the dual program suggests that similar ideas may extend to
recover the guarantees of the Lovasz Local Lemma via the proof of Theorem 10.24.
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10.4.3. The twisted hypercubes

Finally, we introduce a family of discrepancy instances for which the tools we use to analyze
our iterative framework fail to provide interesting bounds. It is an interesting question
whether a more refined analysis will yield an improved discrepancy bound.

We view these examples as useful benchmarks for evaluating progress on improving
discrepancy bounds.

Definition 10.25 (Twisted Hypercubes). The graph on one vertex is the only twisted
hypercube of dimension 0. A twisted hypercube of dimension d is then obtained by taking
two copies of the same twisted hypercube of dimension d — 1, and adding a matching
between both vertex sets.?

Twisted hypercubes of dimension d have n = 2¢ vertices, each of degree O(logn).
Theorem 10.24 implies that they have colorings of discrepancy O(+/log nloglogn), but
Theorem 10.6 only gives a bound of O(log n) (note that this would also follow from [BF&1]).
It remains an interesting open problem to construct colorings of twisted hypercubes with
discrepancy o(log n) via the sticky walk approach.’

Remark 10.26. Although smoothing the twisted hypercube is not sufficient to apply
our bounds on pseudorandom Beck-Fiala instances, we can at least transform it into the
adjacency matrix of a (multi-)graph with constant spectral expansion, while only losing
an O(1)-additive factor on the discrepancy of any coloring. Therefore, our question on
the discrepancy of symmetric instances could be reduced to that of the discrepancy of
symmetric expanding instances.

10.5. Summary

We established that the Komldés and Beck—-Fiala conjectures hold for instances whose second
eigenvalue satisfies 1 < 1/logn, a condition met with room to spare in several natural
random models. We also discussed alternative proof strategies based on compression
and duality, and outlined the prospect of unifying these with the iterative frameworks
developed in this work.

2 A slightly different construction consists in adding a matching between two potentially distinct twisted
hypercubes of dimension d — 1. This is for example the convention chosen in one previous use of the
term “twisted hypercube” in the litterature [DPP*18]. We believe it does not make much difference in the
discrepancy setting.

3 One could also consider randomly twisted hypercubes, obtained by taking recursively uniformly random
matchings. They form a family of structured random instances that are not captured by our pseudorandom
bounds.
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CHAPTER 11.

Optimal Constants in Discrepancy and
Sparsification

In this final chapter, we refine the techniques developed in Part III to improve the leading
constants in discrepancy problems. Our main result (Theorem 11.1) is that 4.1 standard
deviations suffice for Spencer’s theorem. This result follows from analyzing an algorithm
that minimizes an £;,-regularized objective for an optimized choice of constant g, together
with several refinements of our previous arguments that allow us to control constant-factor
losses throughout the analysis.

We then discuss how this analysis might be further improved by considering variants of
Spencer’s problem. First, in the learning-with-experts setting, we show that our framework
recovers the optimal constant, but only if we account for a rank-one Hessian term that
we ignored in Spencer’s setting. Second, for the related (and easier) ellipsoid discrepancy
problem, we show that recovering the tight bound requires an amortized analysis of second-
order contributions along the walk. Finally, we argue that our framework is unlikely to
improve the constants for the construction of optimal spectral graph sparsifiers.
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§11.1 and §11.3 appeared in [PV23].
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11.1. An improved constant for Spencer’s theorem

In his original paper, Spencer proves that any matrix in [—1, 1]"™*" has discrepancy at most
5.44/n [Spe85]. The question of the optimal constant in this statement remains open, despite
the attention it has received both on the lower and upper bound side [Bel13, BKMR25]. In
this section, we improve Spencer’s bound to 4.14/n. Prior to this work, [Bel13, §5] improves
Spencer’s bound to 5.24/n and sketches how to obtain 3.7+/n, but some computations rely
on personal communication. Unlike all these previous results, our proof is algorithmic.

Theorem 11.1. For every A € [—1,1]™", there exists x € {—1,1}" such that
|Ax||o < 4.1Wn+0(1).
Moreover, x can be found by a randomized algorithm running in polynomial time.

To prove Theorem 11.1, we revisit the argument from §9.4 by tracking constants more
carefully. We start by giving an analog of Lemma 9.15 with a tighter leading constant.

Lemma 11.2. There exists C > 0 such that the following holds for anyq € (0,1) andk,n > 1.
Let M=3", Vl.z_quiul.T for some vectors uy, . . ., u, in the unit ball oka, and V € A,,.

Then there exists a 2-dimensional subspace S such that the projection Ils onto S satisfies

C

1
ITLs ML, < (1 + E) et

Moreover, for any constant € > 0, there is a randomized polynomial-time algorithm outputting
a 2-dimensional subspace S satisfying with high probability

I MII < (1 1 ¢ !
||TTs sl < (1+¢) +E q

Proof. Assume that V; > ... > V,, without loss of generality. We will prove that if « is
sampled uniformly in the interval (%, 1), then

f(V)= E Z A <qu_1+O(k‘1‘2)= E [(1-a)kT'+0(k77?). (11.1)

l a~(L1)
We first explain why (11.1) implies the desired bound. Let a € (3, 1) be such that

1 Z 2—q -2 -3
— Vi <Kk T+ 0(KT).
_ i
(1 a)k iz|ak]
Then we can repeat the proof of Lemma 9.15 to get a 2-dimensional subspace S such that

for all unit v € S,
(v, Mv) < k7% + O(k773),
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which is equivalent to the desired statement since M > 0. Furthermore, if ¢ > 0 is constant,
the corresponding « can be found with high probability by repeating the experiment and
using Markov’s inequality.

It remains to prove (11.1). We compute explicitly

f(V)zZ[l > Vilda= ) (Z(i]:rl)_l)vf-q.

2 i>[ak] i>|E]

LetP={VeA,:Vy>... >V,} Since f: P — R is a convex function, it attains its

maximum at an extreme point of P. Those are of the form z, := (% e % 0...0) (with ¢

nonzero coordinates) for some £ € [m]. Moreover, the maximum of f has to be attained
when ¢ = yk, with y € [%, 1]. However, in that case,

_k(k
(t+1)—3(5+1) _(g_§+1)+0(1))

f(ze) =977 2

1
= k9! (\/— -—+ 4y13/2) +0(k77?) .

Finally, y = fy — # + ﬁ is increasing on [%, 1], with maximum equal to % fory = 1.

This concludes the proof of (11.1). ]

We also sharpen the constant in front of the second-order term in Lemma 9.12.

Lemma 11.3. There exist universal constants C1,C; € (0, 1) such that if V := Vg, (y), then
for all § € R" with ||8]lw < C1 L,

* * Ul C2 - 2—q o2
+0) < +(V,0) + —— |1+ — Vs
D+ 8) < 0y (y)+ (V. 8) + 2 ( - ) Z e
Proof. The proof is identical to the proof of Lemma 9.12. We simply replace (9.9) by the
stronger inequality following from the stronger assumption on || §|| . O

Proof of Theorem 11.1. We follow the proof of Theorem 9.14. We set the update size in
Algorithm 4 tobe L = 4%12, where C; is the constant from Lemma 11.3. We use the doubling
trick Remark 9.2 to replace A by a 2n X n matrix such that ||Ax||c = max;e[,)(A;, x) for
any vector x. We use the potential function @, for some parameters g € (0,1) and n > 0
to be optimized at the end.

First, by Lemma 9.11, the initial loss is

(2n)'4
nqg

Wgy(0) <
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Then, at any time ¢, we apply Lemma 11.3 to get that for any ||§||c < L,

2n
* * n Cz 2—q 2
Wy (Ax(t) + AS) — wy, (Ax(t)) < (A8, V) + 20-9) (1 + 7) ; V(A 8)°,
where V = Vg, (Ax(t)) € Az Next, we apply Lemma 11.2, where the u; are the
normalized rows of A restricted to the active coordinates. Note that these rows have
f,-norm at most Vk, where k is the number of active coordinates. In this way, we find a
2-dimensional subspace S such that if § € S has small enough £,,-norm,

C 1
||6||2 Z < > ( ¥ k) k2

2 i=1

We then choose a direction for § € S so that (8, x(t)) = 0, and a signing +§ that makes
the first-order term (A(£6), V) < 0. With this choice of §, the increase in the potential at
time ¢ is at most

C

s (Ax(t) + AS) — ] (Ax(t))\||6||22(1_ )(1+Cz)(1+—)ﬁ.

Then, the summation by parts argument of §9.4 yields

1Ax(T)|eo < 03, (Ax(T))

T
< @), (0) + Z 0} (Ax(1)) = 0, (Ax(t - 1))

t=1
1-q q
GRS B T
nq 2(1-¢q)

S

Optimizing over n > 0 and g € (0, 1), we obtain that up to a constant additive error, the
discrepancy of A is at most

2 i —— < 4.1vyn,
s aga—g <t

achieved for g ~ 0.71. Finally, the algorithmic statement follows from using the constructive
version of Lemma 11.2. O

11.2. Cancellations in regularization bounds

The best known asymptotic lower bound on the constant in Spencer’s problem, as n — oo,
is 1, achieved by Hadamard matrices (and by random matrices). In general, we do not
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expect the analysis in §11.1 to be tight. In particular, the use of ¢, 7;-regularization seems
somewhat ad hoc, and the analysis disregards information contained in the first-order term.
This section provides evidence that our algorithm may achieve a better constant than we
can currently prove. We demonstrate this by revisiting a toy problem: learning with expert
advice. We show that the analysis in §11.1 does not recover the optimal guarantees for this
problem, and we explain how to remedy this.

Learning with expert advice

We provide a short background on learning with expert advice, and refer to [KP17,
Chapter 18] for additional context.

Consider the following game played over rounds ¢t = 1,...,T. There are d experts giving
predictions, and one player using the predictions of the experts. At the start of every round
t, the player picks a distribution r; € A; over the experts {1,...,d}. After that, the gain
t;(i) € [0, ¢] incurred by the prediction of each expert i € [d] is revealed. The choice of
the player yields a reward (r;, £;).

The goal is to find a strategy to pick sequentially ry, ..., r; that minimizes the regret:

T

T
Rr = (i) — ) .
T f?ﬁff; t(l) Z("t t>

t=1

To mirror the regret minimization interpretation of our algorithm (§9.2.3), we will assume
the loss magnitude ¢ to be very small. One can think of learning with expert advice as an
adversarial setting where losses are arbitrary bounded vectors.

Regret analysis from the Hessian

The optimal strategy for the player turns out to be a regularized strategy, i.e., to choose
in advance a regularizer w: R — Ry and a parameter n > 0, and pick

m

1
ri :=argmax (r,L;_;) + — Z w(ri),

relA, i=1
where we denote by L; := })._, £, the cumulative gains of each expert up to time t. Similarly
to the discrepancy setting, the analysis tracks the potential function

1 m
O, == w* (L), where w* (L) = max(r,L>+—Za)(r1‘).
reApy, n =1

In particular, we have the exact relation r;y; = Vw* (L;). Also, by construction, &y = w*(0)
and &7 > max;e[,) L;(i) always upper bounds the gain of the best expert. Applying this
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upper bound and re-expressing as a function of w*, we obtain

T
Rr < &7 - Z (ri, ;)
t=1

T T
Dy + Z(q)t - D) — Z (re, £r)
=1 t=1

T
©*(0) + ) [0 (Lit + ) = ©" (Li-1) = (Vo' (Lir), )] -
=1

When the gains are bounded by [0, €], as ¢ — 0 this reduces to bounding the contribution
from the Hessian term:

T
1
Rr < 0'(0) + Z (€, V20" (Li1)t;) .
t=1

Tight constant for negative entropy regularization

We now specialize the previous analysis to the case w(r) = —rlogr, which makes the
algorithm equivalent to the multiplicative weights update method. As in Lemma 9.12, a
direct computation yields

exp(nL)
iz exp(nL(i))

However, to get the conclusion of Lemma 9.12, we ignore the subtracted rank-one term and

Vow*(L) = Vio* (L) = diag(Vew* (L)) - Vo* (L)Vw*(L)" .

simply upper bound it by 0. Moreover, a similar rank-1 term is removed in our analysis of
{,-regularization (this appears explicitly in the proof of Lemma 9.12). Applying this coarse
upper bound in the learning with expert advice setting would give

d . .
(zt,vzw*(Lt_l)etKZiﬂeXp(”Lt‘l(’))[t(’)Z: E 4(i). (11.2)

szzl exp(nL;-1(i)) i~Va" (L)

On the other hand, the second-order term actually equals

d . N d . A\ 2
=1 exp(nL;-1(i)) (i) 3 izt exp(nLs—1(i)) (i)

£, Ve (L)) = 11.3)
(e Ve (Le-nte) YL exp(nLi-1(i)) S exp(nLe-1(i)) (
= Var £4(i). (11.4)
i~Vo*(L-1)

This makes a key difference: while the second moment of a distribution supported on [0, ¢]
can be as large as € (as in (11.2)), its variance is always bounded by £?/4 (as in (11.4)). As a
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result, the first argument gives a regret of 4/2T log d, while the second gives /T logd/2.
This last bound turns out to be optimal for this problem [KP17, Proposition 18.3.8].

Although we do not currently know how to exploit such cancellations for £;-regularization,
this suggests that the bound in §11.1 may be overly pessimistic.

11.3. Amortized analysis for ellipsoid discrepancy

In this section, we show that improved discrepancy bounds can arise from performing an
amortized analysis of the gradient updates along the walk. We analyze a simpler geometric
variant of Komlds problem, which we call ellipsoid discrepancy. This problem was originally
studied by Banaszczyk [Ban90].

Definition 11.4. Let B € R be a positive definite matrix, Define for all x,y € R,
(x,y)p = (x,By), |lxll3 = (x,x)p .

We are interested in the following “Euclidean” version of the Komlds problem: Given a
matrix A € R¥" with columns of ,-norm at most 1,

min ||Ax||p.
xe{—1,1}n

Banaszczyk [Ban90] proves that there always exist colorings with ellipsoid discrepancy
Vtr B. This is tight for any B, as can be seen by taking the columns of A to be an orthonormal
basis of eigenvectors of B. Moreover, it follows implicitly from prior work, including the
Gram-Schmidt walk algorithm [BDGL19], that this bound can be matched algorithmically
up to constant factors.!

We give a different algorithmic proof, based on our iterative meta-algorithm Algorithm 4,
that highlights the necessity of performing an amortized analysis in some cases.

Theorem 11.5. There is deterministic, polynomial-time algorithm that given B > 0 and
A € R¥" ywhose columns have t,-norm at most 1, outputs x € {—1,1}" such that

|Ax||g < VirB.

Our proof of Theorem 11.5 uses the iterative machinery described in §9.3.1. Since || - [|% is
already a smooth degree-2 polynomial, no regularization is needed here. However, simply
repeating the analysis in §11.1 would incur an extra logarithmic factor.

I'We thank the anonymous SODA reviewers for pointing this out.

213



Chapter 11. Optimal Constants in Discrepancy and Sparsification

Proof. First, apply a rotation to reduce to the case where B is diagonal. This does not affect
the norms of the columns of A. Let b; > ... > by > 0 be the diagonal elements of B.

As usual, we run a sticky walk x = x(¢) € [-1, 1]". When we make an update &, the
increase in discrepancy is

|A(x + 8)II5 — lAx|5 = |ASI|; + 2 (Ax, AS) g . (11.5)

As before, we pick a signing +6 that makes the linear term non-positive, and otherwise
pick the update that minimizes ||A8||5 over all § supported on active coordinates.

Suppose that the set of active coordinates is F, and let k := |F|. Since ||A6||% =
<6, ATBAS >, it suffices to prove that (Af) TBAF has a small eigenvalue, where A is the
matrix A restricted to the columns in F. A standard Gaussian § in the (k/2)-dimensional
subspace orthogonal to the rows Af .,Ai /2 has #,-norm ~ \/m and expected quadratic
form at most

d
bijz ATl < Kby

i=1
This implies that (Af) TBAF has an eigenvalue smaller than O(kby /2)-

We now need to bound the increase in discrepancy across the entire algorithm. Note
that our bound depends on b, .. ., by, which play the role of the gradients in §11.1. Here
we leverage the fact that those gradients stay constant over the duration of the algorithm
to provide an amortized analysis.

Let fi denote the total £,-squared norm injected into x(t) between times t; = min{t :
|F(t)| < k} and T = min{t : |F(t)| < 3}. In particular, we have f; < k. We integrate the
second-order increase in (11.5) via summation by parts:

ld/2] ld/2]
Z b (Bak+1 — Pok-1) = Z Poi—1(br—1 = bi) + bla/2) Ba
k=2 k=3

Ld/2]

< Z (2k = 1) (bg—q — by) + dbyayz)
k=3

<trB.

Since the final step of Algorithm 4 only changes the squared discrepancy by O(tr B), the
final coloring x* satisfies
|Ax*||j < trB. 0

11.4. On the optimal constant for graph sparsification

In this section, we explore potential applications of our framework to improving graph
sparsification bounds.
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We start by recalling the notion of spectral sparsification that generalizes cut sparsification
(Problem 1.3) [ST11].

Definition 11.6. Let G = (V, E) be a graph with edge weights w: E — R. For any edge
e ={u,v} € E,let L, = w.(e,—e,)(e,—e,) " be the Laplacian matrix of e, and Lg = < Le
be the Laplacian matrix of G.

We say that a weighted subgraph H of G is a spectral sparsifier of G with error ¢ > 0 if
(1-¢)Lg <Ly < (1+¢)Lg. (11.6)

When x is a {0, 1}-valued indicator vector of a cut, the quadratic form (x, Lgx) is the
number of edges of G crossing the cut. This implies that any spectral sparsifier is also a cut
sparsifier.

It is believed that the hardest graph to sparsify (in terms of tradeoff between error and
number of edges) is the (unweighted) clique. The seminal result of Alon and Boppana [Nil91]
shows that any unweighted spectral sparsifier of the clique with error ¢ must have at least
(2 —0(1))n/e? edges.? Srivastava and Trevisan conjecture that this lower bound still holds
for (weighted) sparsifiers of the clique [ST18]. Batson, Spielman, and Srivastava [BSS14]
show that any graph has a spectral sparsifier with (4 + 0(1))n/e* edges. Finally, Chen,
Shi, and Trevisan [CST22] show that the clique has a cut sparsifier with (4/7 + 0(1))n/&?
edges. This leaves a gap of 2 between the best-known upper and lower bound for spectral
sparsification.

The algorithm in Batson, Spielman, and Srivastava implicitly solves a harder online
problem. Srivastava and Trevisan [ST18] show that for this harder problem, the constant
4 in the guarantees of [BSS14] is the best one can hope for. This raises the question of
whether algorithms inspired by [BSS14] but that avoid solving this harder problem might
offer a path to improving this constant.

One such candidate algorithm arises from the reduction from graph sparsification to dis-
crepancy theory described in §1.1.3. Indeed, using this reduction, Reis and Rothvoss [RR20]
showed that the construction of linear-size sparsifiers follows from a partial coloring
lemma:

Lemma 11.7. For any symmetric matrices Ay, . .., Am € R™" such that 3" | A; = I, there
exists x € [—1,1]" that has Q(m) coordinates equal to +1, and

n
<A/ —.
m

2
The connection between Definition 11.6 and Lemma 11.7 is clarified by the following

m

Z X A;

i=1

observation. Let Ie = Lg 2L6L2/ % denote the normalized Laplacian of edge e, where

2 In this section, we use 0(1) to denote an error term going to 0 in the double limit n — oo, then £ — 0.
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is the Moore-Penrose pseudoinverse. Then, ) ,.x fe = I, and in this notation, (11.6) is
equivalent to
(1-oI, < LIyl < 1+ ) 1I,.

Building on the framework introduced in this thesis, Lau, Wang, and Zhou [LWZ25]
showed how to prove Lemma 11.7 using £;,-regularization. Given the discussion earlier
in this chapter, one might hope that our framework could help break the long-standing
sparsification barrier.

One issue is that our approach does not distinguish between sums of arbitrary matrices
like in Lemma 11.7, and the case where these matrices arise as normalized Laplacians of
graphs. However, some general matrices may be harder to sparsify than the clique itself:

Theorem 11.8. Let ¢ > 0 be a constant. For any n < m < n?, there exist vectors uy, . .., up,
such that (1 - o(1))I, < X2 wu] < (1+0(1))I,, but forany S C [m] of size |S| = n/é?,

Amax (ZSES usu;r)
Amin (Xses ustty)

Theorem 11.8 does not entirely rule out our strategy, because it only excludes the exis-

>1+(4-0(¢))e.

tence of unweighted sparsifiers. However, the situation seems similar to the prediction of
Srivastava and Trevisan. We conjecture that allowing weights does not make sparsification
of rank-one matrices any easier.

Proof. Letvy,...,v,, beiid. N(0,I,) for some n < m < n?. Note that E % Yiviw] =1,

Fix S C [m] of size |S| = n/e?. Concentration bounds for Wishart matrices (see,
e.g., [VMBO07]) imply that

1 )
Pr (/lmaX (E Z vsv;r) < (1+¢)? - ez) < e e

seS

1 2
Pr | Amin | = vo! | > (1—8)2+£2 <e e
e

for some constant C(¢) > 0 independent of n. Hence, with probability at least 1 — 2e7C(e),

we have
Amax (Zses Usv;r) S 1+ 2¢

Amin (Zses Usv;r) T 1-2e+2¢2

> 1+4e—0(%).

. 2 . .
Then, we take a union bound over all ( n722) g 20(nlogn/e) possible choices for S. Moreover,
when n < m < n?, we have

(1-o(1)I, < %zmlviv;_ <(1+o(1)I,,

i=1
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11.5. Summary

with high probability, so by another union bound we satisfy both the condition number
property and the normalization one, with high probability. []
11.5. Summary

In this final chapter, we showed that our proof of Spencer’s theorem can be strengthened
to yield a tighter constant, and we suggested several avenues for further improvement.

A key insight from the study of random polynomial optimization in Part I and Part II
is that finding the “optimal regularizer” leads to the best-performing algorithm for the

problem [Mon19, JSS25].

Does there exist a regularizer that achieves the optimal constant in Spencer’s theorem?

We leave this as our closing open problem.
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APPENDIX A.

Additional material on the Fourier
diagram basis

A.1. Gaussian distribution and combinatorics

We can derive convergence in distribution of random vectors by computing their moments.

Lemma A.1 (Method of moments [Bil95, Theorems 29.4, 30.1, and 30.2]). Let X, € R¢ for
n € N and Z € R? be random vectors such that for any q1, ..., qq € N,

d d
qi qi
[ [ [ ]2

Suppose that for all i € [d], Z; has a Gaussian distribution. Then X, Ny

E

— E
n—oo

The Gaussian distribution and their orthogonal polynomials (the Hermite polynomials)
have combinatorial interpretations related to matchings.

Lemma A.2. Let Mperfect(q) be the set of perfect matchings on q objects. Then,

qlod

E [z27] = |Jv[perfect(q)| ol = {Wq/z)! if q is even
0

Z~N(0,02) if q is odd

Lemma A.3 ([Jan97, Theorem 3.4 and Example 3.18]). Forallq > 0 and x € R,

hq(x;az): Z (—1)Mlg2MIyq=2IM]
MeM(q)

where V(q) is the set of (partial) matchings on q objects (including the empty matching and
perfect matchings).

Lemma A.4 ([Jan97, Theorem 3.15 and Example 3.18]). Foranyqi,...,q; > 0 andx € R,

ho(x50%) g, (xs0%) = > hggu(x;0%)a®M,
MEM(ql,...,q[)
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where M(qy, - . ., qe) is the set of (partial) matchings on q = q1 + - - - + q; objects divided into
¢ blocks of sizes qu, . . ., q¢ such that no two elements from the same block are matched.

Finally, we recall:

Lemma A.5 (Gaussian integration by parts). Let (Z1, ..., Zy) be a centered Gaussian vector.
Then for all smooth f: RF — R,

E[Zif(Zs,. ... Z0)] ZE 7.7 l—(zl,...,zk)l.

A.2. Omitted Proofs

A.2.1. Removing hanging double edges

In order to implement the removal of hanging double edges, we introduce an additional
diagrammatic construct to track the error, 2-labeled edges. These terms are equal to zero
when A is a Rademacher matrix and it is recommended to ignore them on a first read.

Definition A.6 (Edge-labeled diagram). An edge-labeled diagram is a diagram in which
some of the edges are labeled “2”.

We let E(«) denote the entire multiset of labeled and unlabeled edges of a, E»(@) the
multiset of 2-labeled edges and E; () = E \ E»() the multiset of non-labeled edges.

We use the convention that |E(«)| counts each 2-labeled edge twice, so that |E(«a)|
continues to equal the degree of the polynomial Z, ;.

Definition A.7 (Edge-labeled Z,). For an edge-labeled diagram «, we define Z, € R" by

Zai= ), [1 Ao |] (Ai(u)q)(v) %)

¢: V(a)—=[n] {uv}eE () {u}€E; ()
»(©)=i

The set of diagrams A is extended to allow diagrams which may have 2-labeled edges.
The definition of I(«) from Definition 3.4 must also be updated to incorporate labeled edges
(because a labeled edge is mean-0, it is treated like a single edge).

Definition A.8 (Updated definition of I(«)). For a diagram a € A, let I(«) be the subset
of non-root vertices such that every edge incident to that vertex has multiplicity > 2 or is
a self-loop, treating 2-labeled edges as if they were normal edges.

The following is an exact decomposition for removing hanging double edges.
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A.2. Omitted Proofs

Lemma A.9. Let a € A be a diagram with a hanging (unlabeled) double edge. Let oy be
with both the hanging double edge and corresponding hanging vertex removed, and o, be «
with the hanging double edge replaced by a single 2-labeled edge. Then,

V(@] -1
n

ZLo=2Zy — Lo+ Za,.

Proof. We write:

Lo = Z Al 1_[ Ap)e(y)

@: V(a)—|n] {xyteE(a)\{{uo}.{u.0}}
p(©)=i

= Layi T % Z 1_[ Apx)p(y)

¢: V(a)—=[n] {xy}eE(a)\{{uo},{uo}}

¢(©)=i
n—[V(a)|+1 V(o) -1
= Zaz,i + n : Za'(),i = Zao,i - TZOZ(),I' + Zag,i .

The additional n — |V (@)| + 1 scaling factor comes from removing the hanging vertex. []

A.2.2. Omitted proofs for §3.3

We prove a more specific version of Lemma 3.5.

Lemma A.10. Letq € N,a € A, and i € [n]. Then,
|E [ZZJH < My 295 @) (g |V (@) )TV @] . (V@ I1- B @)

where My is a bound on the k-th moment of the entries of A (recall the notations of Assump-
tion 2.1),

Mk:maX(E [|X|’<], E [|X|k]).
X~p X~po

When q and |V ()| are O(1), the overall bound reduces to

)E [Zq ” <O (n%<|V<a>|—1—|E(a)|+|I(a>|>) _
a,l

Proof. We expand E [Zg,i] as

q
Z E n 1_[ A(Pp(u)<ﬂp(v) 1_[ (A;p(”)%(”) B %)

P1pq: V() =[n] | p=1 \{uv}€E;(a) {uo}€E;(a)
P1(©)==¢4(Q)=i
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This is a polynomial of degree g|E()| in A (by convention every 2-labeled edge contributes
2 to |E(a)|). We first estimate the magnitude of any summand of the sum over ¢y, . .., ¢4
with nonzero expectation. Each such summand can be decomposed into 27/%2(®)| terms by
expanding out’ the Afj — 1. This leaves monomials in the entries of A of total degree at most
q|E(a)|. We bound the expected value of each of these monomials by M, E(a)|n"q|E(O‘)|/ 2 us-
ing Holder’s inequality. This shows that any nonzero term in the summation has magnitude
at most 29/E2( @IV 5 n~AE@I/Z,

To bound the number of nonzero terms, we observe that every edge A, for j # k must

occur zero times or at least twice in order to have nonzero expectation (the self-loops A;;
1
n
additional edge in order to have nonzero expectation). Each vertex in V() \ I(a) \ {©} is

can occur any number of times, and the 2-labeled edges Aik — = must overlap at least one
incident to an edge of multiplicity 1 or a 2-labeled edge, and so it must occur in at least
two embeddings in order for that edge A to overlap and not make the expectation 0. This
implies that the number of distinct non-root vertices among the embeddings is at most
q(|V(a)| —1+|I(a)|) /2 where the —1 is used to avoid counting the root.

Hence, there are at most nd(IV(@)|-1+I(a)])/2

ways to choose the entire image img(¢;) U
... Uimg(¢q). Once this is fixed, there are at most (q|V () )1V(@! g-tuples of embeddings
that map to these vertices. We conclude by combining the bound on the number of nonzero

terms and the bound on the magnitude of each of these terms. [l

Proof of Lemma 3.8. By assumption, x — y is a sum of combinatorially negligible terms. We
first focus on a single one of them, say a,Z,. For any ¢ > 0,q € Nand i € [n], we have

Pr (|anZe,i| > ¢€)

E anZ iq
< %q(x" (Markov’s inequality)
€

4
2

N

1 —
—Maiz(a 27 (glV (@)1 n (Lemma A.10)

q
2

N

1 _ .
E(q|E(0{) )O@29E@ gV (o)) V@] . (subgaussianity of A;;)

exp (O(qlog q) — glogn + qlog(l/g)) .

1/2 and taking the constant C large enough we can make the

Picking g = logn and ¢ = ¢“n~
probability an arbitrarily small inverse polynomial in n. Then we take a union bound over
all i € [n] and all combinatorially negligible term appearing in x — y (there are constantly

many such terms by definition). ]

Proof of Lemma 3.9. It suffices to prove that for a combinatorially negligible term n*Z,,:

UThe factor 27/F2(®)| may be removed with a tighter argument.
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A.2. Omitted Proofs

1. All terms in the diagram representation of n"*AZ,, are combinatorially negligible.

2. Let n!Zg be any term of combinatorial order 1 or combinatorially negligible. Then
all terms in the diagram representation of the componentwise product n~**07, o Z J;
are combinatorially negligible, where © is the componentwise product.

For 1, the diagram representation of AZ, is given by Lemma 2.11. In the term o™ without
intersections,

V(e =1V()l+1, (@) =(a)],  [|E(a")]=[E(a)]+1.

From this we can check that n7¥Z,+ is still combinatorially negligible.

In a term f corresponding to an intersection between the new root and a vertex of «,

VI =1V(l, Pl < (@] +1,  [E(P)|=[E(a)]+1.

The second inequality follows from the observation that the only vertices from o whose
neighborhood structure can be affected by the intersection are the root of « (which does
not contribute to |I(«)|) and the intersected vertex. Hence, n™Z p is also combinatorially
negligible.

For (ii), the diagram representation of Z,®Z is given by Lemma 2.14. Fix an intersection
pattern P € P(«, ) that has b blocks and denote by y the resulting diagram. Then,

VI =b+1,
[E(V)| = [E(a)] + |E(B)]
(| < ()| + (B + V()| + V(S| =b—2.

The last inequality is proven by observing that for a non-root vertex that is neither in I(«)
nor I(f) to contribute to I(y), it must intersect another vertex. Moreover, there are at most
V()| + |V(B)| — b — 2 intersected non-root vertices in y.

Putting everything together,

V(I -1-E(W]+ I(y)]
< V()| = 1= [E(a)] + ()| + V()| = 1 = [E(B)] + [I(P)]
<2(k+?),

since n%Z,, is combinatorially negligible and n=*Z p is at most order 1. This concludes the
proof. [l

Using the 2-labeled edges introduced in Appendix A.2.1, we can implement the removal

of hanging double edges.
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Appendix A. Additional material on the Fourier diagram basis

Proof of Lemma 3.10. Starting from the decomposition of Lemma A.9,
V()| -1
n

anZar = anZao —a n

Zaro + (anaz 3

we claim that the first term is combinatorially order 1, and the second and third terms
are combinatorially negligible. Comparing oy to @, two edges and one vertex in I(«) are
removed. This does not change the combinatorial order. The second term scales down
by n and this becomes negligible (by assumption |V («)| is constant). In the third term,
[I(az)] < |I(e)| to take into account the hanging vertex, while |V(a)| = |V(a;)| and
|E(a)| = |E(a2)| remain unchanged, making the term negligible. We remind the reader
that |E(a)| = |E(a2)| because |E(az)| counts 2-labeled edges twice. ]

Definition 3.6 includes the coefficient a, in the definition in order to incorporate factors
of % on some error terms such as those in the proof above.

A.3. Scalar diagrams

We collect the properties of scalar diagrams (Definition 3.11) which naturally generalize
those of vector diagrams. We omit the proofs of the results in this section, as they are direct
modifications of their vector analogs.

First, the scalar diagrams are an orthogonal basis for scalar functions of A.

Lemma A.11. For any proper a € Agcalar:
« For any proper B € Agcalar Such that p # o, E [ZaZ[;] =0.
« E[Z,] =0 ifa is not a singleton.
+ The second moment of Z, is

(n-1)---(n— V()| +1)

HE@)]
= |Aut(a)|- nIV(a)I—IE(a)I(l +0(1)),
n—oo

E[z2] = |Aut(a)|- "

where the last estimate holds whenever |V (a)| = o(\/n).
Proof. Analogous to Lemma 2.8 and Lemma 2.9. []

When scalar and vector diagrams are multiplied together, the result can be expressed in
terms of diagrams by extending the notion of intersection patterns P(ay, ..., ax) (Defini-
tion 2.12) and intersection diagrams (Definition 2.13) to allow scalar and vector diagrams
simultaneously. The “unintersected” diagram consists of adding all the scalar diagrams
as floating components to the vector diagrams, which are put at the same root. The inter-
section patterns are partitions of this vertex set such that no two vertices from the same
diagram are matched.
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A.3. Scalar diagrams

Lemma A.12. Let ay, ..., ax be either scalar or vector diagrams. Then
Z(X1“'Z(Xk = Z ZO{p9
PeP(ay,....,ax)

where the product is componentwise for the vector diagrams.
Proof. Analogous to Lemma 2.14. ]

We define I(«) for scalar diagrams exactly as in Definition 3.4.

Lemma A.13. Letq € N, a € Agcalar, and i € [n]. Then,
|]E [Zg” < Mq|E(a)|2qIE(a)|(q [V ()4 (@ i (V@=E@HI@])
where My, is defined as in Lemma A.10. When q and |V ()| are O(1), this reduces to
E[Z]| <0 (n%(|V<a>|—|E(a>|+|I<a>|)) _
Proof. Analogous to Lemma A.10. ]

Definition A.14 (Combinatorially negligible and order 1 scalar). Let (ay),en be a sequence
of real-valued coefficients with a, = ©(n¥), where k > 0is such that 2k € Z. Let a € Agcalar
be a scalar diagram.

« We say that a,Z, is combinatorially negligible if
[V(a)| — |[E(@)| + |I(a)] < 2k —1.
« We say that a,Z, has combinatorial order 1 if
V()| - |E(@)] + ()| = 2k.
We define = for scalar diagram expressions exactly as in Definition 3.7.
Lemma A.15. Let x and y be scalar diagram expressions with x = y. Then |x — | 225 0.
Proof. Analogous to Lemma 3.8. []

Lemma A.16. Let a,Z, be a combinatorially negligible scalar term. Let b,Zg be any scalar
or vector term of combinatorial order at most 1. Then all terms in the product a,b,Z,Zy are
combinatorially negligible.

Proof. Analogous to Lemma 3.9. ]
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Appendix A. Additional material on the Fourier diagram basis

In Lemma 3.13, we characterized the connected vector diagrams which are combinatori-
ally order 1. We now similarly characterize the order 1 scalar diagrams.

Lemma A.17. Let @ € Agcalar be a scalar diagram with ¢ connected components, c; of which
contain only vertices in I(a). Then n~(¢+/27Z  is combinatorially negligible or combinato-
rially order 1, and it is combinatorially order 1 if and only if the following conditions hold
simultaneously:

1. Every multiedge has multiplicity 1 or 2.

2. There are no cycles.

3. In each component, the subgraph of multiplicity 1 edges is empty or a connected graph

(i.e. the multiplicity 2 edges consist of hanging trees)
4. There are no self-loops or 2-labeled edges (Appendix A.2.1).

Proof. We proceed as in the proof of Lemma 3.13. In each connected component C con-
taining at least one vertex s € V() \ I(«), we run a breadth-first search from s, assigning
the multiedges used to explore a vertex to that vertex. This assigns at least one edge to
every vertex in C \ {s}, and at least two edges to every vertex in I(«) N C. This encoding
argument shows that

2[I() NCl+|(V(a) \ I(a)) NC| =1 < |E(O)] , (A1)

where E(C) denotes the set of edges in the connected component C.

In each connected component C composed only of vertices in I(«), we run a breadth-first
search from an arbitrary vertex, and obtain

2([I{le) nC|=1) = |V(a) NC| + |[I(a) NC| -2 < |[E(C)] . (A.2)
Summing (A.1) and (A.2) over all connected components, we obtain
[V(a)| = [E(a)| + [I(a)| < (c—cr) +2cr =c+cy.

This shows that n=(¢**)/2Z, is combinatorially negligible or combinatorially order 1, and it
is combinatorially order 1 if and only if equality holds in the argument. This happens if and
only if there is no cycle, multiplicity > 2 edges, self-loops, or 2-labeled edges anywhere;
and if the graph induced by the multiplicity 1 multiedges is connected. ]

With this result in hand, we can now characterize the order-1 vector diagrams with
several connected components:

Corollary A.18. Let a € A be a vector diagram with c floating components, c; of which
consist only of vertices in I(a). Then n~\***D/2Z , is combinatorially order 1 if and only if both
the floating components (viewed as one scalar diagram) scaled by n=(**0/2 and the component
of the root are combinatorially order 1.
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A.4. Proof of classification of diagrams

Proof. Definition 3.6 sums across the root and floating components, so we may apply both
Lemma 3.13 and Lemma A.17. []

A.4. Proof of classification of diagrams

Lemma A.19. Forallo € S andi € [n], Z;; i> N(O, |Aut(o)|). Similarly, forallt € Tscalars
37, -5 N(0, |Aut()]).

Proof. We show that the moments E [ZZ i] match the Gaussian ones, and use Lemma A.1.

Let g € N be a constant independent of n. First, we expand the product Zz’i in the
diagram basis using Lemma 2.14. Using Lemma 3.13, the only combinatorially order 1 terms
occur when there are no cycles, all multiedges have multiplicity 1 or 2, and the multiplicity
2 edges form hanging trees. Any term with an edge of multiplicity 1 disappears when we

take the expectation E [Zg’ i], while the diagrams which are entirely hanging trees are equal

to © up to combinatorially negligible terms (Lemma 3.10). Further, © has expectation 1,
and by Lemma A.10 each of the combinatorially negligible terms has expectation O(n~1/?).

Thus, E [Zg’i] equals the number of ways to create hanging trees of double edges, up to a
term that converges to 0 as n — oo.

For each of the g copies of o, the single edge incident to the root must be paired with
another such edge. This extends to an automorphism of the entire subtree. In conclusion,

q 2 4. . .
E [Z G’i] converges to |Aut(o) 9/ times the number of perfect matchings on g objects, and

we conclude by Lemma A.2 and Lemma A.1. The proof for the scalar case is analogous. [

Lemma A.20. Ift € T consists of d, copies of the subtrees o € 8, then
Z 2 | | ha, (255 |Aut(o)]) .
o€es
For p € Jgcalar With ¢ components and consisting of d, copies of each tree T € Tcalar,

n‘%zp = 1_[ hq, (n_%ZT; |Aut(r)|) )

T€Tscalar

Proof. We first expand h;(Z; |Aut(o)|) in the diagram basis using Lemma 2.14 and identify
the dominant terms, i.e. those which are combinatorially order 1. As in the proof of
Lemma A.19, the combinatorially order 1 terms in each monomial Z(’;’l. consist of pairing
up copies of the tree o:

k M
Zo = Z |Aut(a) || | Zk—2|M| copies of ¢ »
MeM(k)
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Appendix A. Additional material on the Fourier diagram basis

where M(k) is the set of partial matchings on k objects. Now we use the combinatorial
interpretation of Hermite polynomials (Lemma A.3),

ha(Zos |Aut(@)) = > (~)N|Aut ()M g2

NeM(d)
= Z (_1)|N| |AUt(O-)||N| Z |Aut(0')||M| Zd—2|N|—2|M| copies of &
NeM(d) MeM(d-2|N|)
= Z |Aut(0')||M/| Zd—2|M'| copies of & Z (_l)lNl
M’ eM(d) NcM’
=27y copies of o +

This completes the argument when 7 consists of several copies of a single 0 € 8. If 0,0’ € §
are distinct, using again Lemma 2.14 and Lemma 3.13, we can check that

o0
Zg copies of o CZy copies of ¢/ = Z copies of o and d’ copies of o’ -

The proof then follows by applying these arguments inductively, and extends analogously
to scalar diagrams. ]

Lemma A.21. Let o € F have c floating components. Let g be the component of the root
and agoat be the floating components. Then niZ, = n_gZaﬂoatZ,X@.
Proof. The product n_gZaﬂoatZ(;@ can be expanded in the diagram basis using Lemma A.12.
We claim that the only non combinatorially negligible diagram is the one without inter-
sections, which equals n"2Z,. When an intersection occurs, it can only be between the
root component and a floating component. The new component of the root is at most
combinatorially order 1 (this is a property of all connected vector diagrams, Lemma 3.13),
so there is an “extra” factor of in from the lost component which makes the intersection

L L
term negligible. []

Lemma A.22. {Zg,,- 0 €SI € [n]} U {n_%ZT ITE ‘Tscalar} are asymptotically independent.

Proof. Fix constants g,r € N. We proceed by computing the moment of a set of diagrams

01,...,04 € Srooted at iy, ...,i; € [n] and 7y,.. ., 7; € Tycalar:
q r
_1
Ell |2 | |72, (A3)
p=1 p=1

Let |[V] = f,zl [V(op)| + Xp=y [V(7p)| and |E| = f,zl |E(op)| + Xp=1 [E(7p)]. Let qaistinct be
the number of distinct roots, i.e. the number of distinct elements in {iy, ..., is}.
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A.4. Proof of classification of diagrams

Expanding (A.3) gives a sum over embeddings of the diagrams. We will prove that the
dominant terms factor across the distinct (o0,,i,) and 7,; they correspond to pairing up
isomorphic o, at each distinct root and isomorphic 7,.

Each nonzero term in the expansion of (A.3) equals n~(E#7")/2 (when every edge appears
exactly twice) or O(n~(EH7)/2) (in general) by Assumption 2.1. We partition the summation
based on the intersection pattern as in Definition 2.12. For a given intersection pattern,
letting I be the union of the images of the embeddings, the number of terms with this
patternis (1—-o0(1)) - nl|=ddistinet hecause the Qdistinct YOOt Vertices are fixed. In an embedding
with nonzero expectation, every edge appears at least twice, so every non-root vertex is in
at least two embeddings. Applying this bound to all of the non-root vertices in I,

V] -q

|I | < Qdistinct T 5

Multiplying the value of each term times the number of terms, the total contribution of
this intersection pattern is

E|+r

|E] 1
pll=dasinea— B L(VI=g-IEl-r)

Since the individual diagrams are connected, the exponent is nonpositive. The dominant
terms occur exactly when |I| = qgistinct + (| V| —q) /2, equivalently all of the non-root vertices
intersect exactly one other non-root vertex. Each edge must occur at least twice, and this
condition implies that each edge occurs exactly twice in the dominant terms.

We claim that the only way that each edge and vertex can be in exactly two embeddings
is if isomorphic o}, and 7, are paired. Indeed, by connectivity of o, and ), sharing one
edge extends to an isomorphism. Furthermore, because non-root vertices must intersect
other non-root vertices in the dominant terms, we have that no pairs can be made between
0p and 7, or between o, and o,y which have distinct roots. ]

Theorem 3.14 follows from Lemma A.19, Lemma A.20, Lemma A.21, and Lemma A.22.

The constant-order joint moments of all the diagrams are summarized into the next
theorem which generalizes Theorem 3.14.

Theorem A.23. Suppose that A = A(n) is a sequence of random matrices satisfying Assump-

tion 2.1. Forall ay, ..., € A, iy,...,ix € [n] and P, ..., Pr € Ascalar (allowing repetitions
anywhere),
k t k t .
—Cla: —C(B; 0 0 -1
E l_ln (aj)/ZZaj,ij Hn (ﬂ])/zzﬂj =E nZaj,ij nZﬂj +O(n 2),
j=1 j=1 j=1 j=1
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where C(«a) is the number of floating components of a, and where the asymptotic random
variables (Z;"’l.)ae Ajie[n] and (ZE")ﬁe Aqea 7€ defined as:

Z5 ~ N(0, |Aut(o)|) independently ifoes
Z>X ~N(0, |Aut(7)|) independently if T € Tscalar
zy = | | ha, (255 1A0t(o))) | | ha (255 1Aut(D))  ifpeF
o€d 7€ T scalar
zy= || ha(Z3Aut(r)) if p € Fcalar
<
7€ T scalar
Zy, =2y and Zg’ = Z;Z if removing hanging double edges
creates ap € J or By € Tscalar
Zg5 = ZE" =0 if removing hanging double edges
is not in & or Fscalar

A.5. Handling empirical expectations

Empirical expectations are highly concentrated and Lemma 3.21 confirms this. Note that
the empirical expectations in the Onsager correction for AMP (§4.4) will create floating
components in the diagrams of the algorithmic state, but all such diagrams will be negligible.

Proof of Lemma 3.21. The effect of summing a vector diagram Z, = (Z,,;);c[] OVer i is to
unroot a, converting it to a scalar diagram. We prove this operation makes every diagram
combinatorially negligible, except for the constant term. For k > 0 and a vector diagram

a € A:
1. If ayZ, is combinatorially negligible, then

an n

& 2iic1 Za,i is a combinatorially negligible

scalar term.

2. If a,Z, has combinatorial order 1, and the root of « is incident to at least one edge of
multiplicity 1, then 22 37", Z, ; is a combinatorially negligible scalar term.

Unrooting a vector diagram does not change the number of vertices nor the number of
edges. During this operation, the number of vertices in I(«) stays the same if the root
is adjacent to an edge of multiplicity 1; otherwise it increases by at most 1. We readily
check from the definition that the extra 1 makes the resulting scalar terms combinatorially
negligible.

Now let x be the tree approximation to x. The difference x — X consists of combinatorially
negligible terms which stay negligible by part 1 above. The trees in T become negligible by
part 2 above with the exception of the singleton tree which becomes 1. The singleton has

coefficient E[x;] = E[X] since the other trees are mean-zero (Corollary 2.10). ]
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