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Abstract

We give new rounding schemes for SDP relaxations for the problems of maximizing cubic

polynomials over the unit sphere and the n-dimensional hypercube. In both cases, the resulting

algorithms yield a O(
√

n/k) multiplicative approximation in 2O(k) poly(n) time. In particular,

we obtain a O(
√

n/ log n) approximation in polynomial time. For the unit sphere, this im-

proves on the rounding algorithms of [BGG+17] that need quasi-polynomial time to obtain a

similar approximation guarantee. Over the n-dimensional hypercube, our results match the

guarantee of a search algorithm of Khot and Naor [KN08] that obtains a similar approximation

ratio via techniques from convex geometry. Unlike their method, our algorithm obtains an up-

per bound on the integrality gap of SDP relaxations for the problem and as a result, also yields

a certificate on the optimum value of the input instance. Our results naturally generalize to ho-

mogeneous polynomials of higher degree and imply improved algorithms for approximating

satisfiable instances of Max-3SAT.

Our main motivation is the stark lack of rounding techniques for SDP relaxations of higher

degree polynomial optimization in sharp contrast to a rich theory of SDP roundings for the

quadratic case. Our rounding algorithms introduce two new ideas: 1) a new polynomial

reweighting based method to round sum-of-squares relaxations of higher degree polynomial

maximization problems, and 2) a general technique to compress such relaxations down to sub-

stantially smaller SDPs by relying on an explicit construction of certain hitting sets. We hope

that our work will inspire improved rounding algorithms for polynomial optimization and

related problems.

1 Introduction

The focus of this paper is on polynomial optimization: approximate the maximum of a given n-

variate polynomial p over the Boolean hypercube {±1}n or the unit n-dimensional sphere Sn−1.
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This formulation is very expressive and captures several important discrete and continuous opti-

mization problems. Representative examples include constraint satisfaction problems (CSPs) such

as Max-Cut and Max-3SAT; the best separable state problem [BKS17] and the QMA(2) vs EXP con-

jecture in quantum information [AIM14]; the problem of finding lowest energy states of spin-glass

systems in statistical physics [SK75]; and the problem of finding optimal Lyapunov certificates of

stability in control theory [Par00].

Thanks to spectacular developments in the design and analysis of algorithms using semidef-

inite programming, the case when p is a homogeneous quadratic polynomial is well understood.

Over the unit sphere, the problem is easy and is equivalent to computing the maximum eigen-

value of the coefficient matrix. Over the hypercube, Goemans and Williamson [GW95] ushered in

a new era for such problems via their elegant “hyperplane” rounding of the canonical semidefi-

nite programming (SDP) relaxation for quadratic optimization. The resulting momentum led to

similar rounding algorithms for the bipartite case (a.k.a., the celebrated Grothendieck inequal-

ity) [AN06], positive semidefinite case (via the Nesterov rounding) and arbitrary quadratics (via

the Megretski rounding) [Meg01, CW04]. Some examples of the many algorithmic applications

include approximation algorithms for 2-variable CSPs, cut norms of matrices [AN06], and cor-

relation clustering [CW04]. To top it off, a general result of Raghavendra [Rag08] shows that

rounding the canonical SDP is in fact the optimal approximation algorithm for all CSPs assuming

the Unique Games Conjecture (UGC). Together, these results establish a conjecturally complete

picture of quadratic maximization and underscore the centrality of SDP rounding.

In sharp contrast to this rich picture of the quadratic case, even the very next step of cubic

optimization is scarcely understood1. This can be directly “blamed” on the significantly under-

developed technology for rounding canonical SDP relaxations of higher degree polynomial op-

timization problems. The only known general result in this direction is the rounding scheme

of Bhattiprolu et. al. [BGG+17] for the natural SDP relaxation (arising out of the sum-of-squares

hierarchy of semidefinite programs) of (a variant of) polynomial optimization2 over the unit n-

dimensional sphere. For cubic polynomials, their algorithm gives an O(
√

n)-approximation. Over

the hypercube, we know of no rounding algorithms (for any convex relaxation) that obtain a non-

trivial approximation guarantee. Indeed, the only known algorithmic result in this direction is the

seminal work of Khot and Naor [KN08] that gives a randomized O(
√

n/ log n)-approximation

algorithm by circumventing SDP rounding altogether and relying on anti-concentration inequali-

ties and techniques from convex geometry instead. On the flip side, random homogeneous cubic

polynomials (over the hypercube, these are equivalent to random 3-XOR formulas) are known to

exhibit a Ω̃(n1/4) integrality gap for the natural SDP relaxation and their constant degree sum-

of-squares strengthenings (over both the unit sphere and the hypercube), while the best known

NP-hardness [Hås01] can rule out only constant-factor approximation algorithms.

In addition to being a central algorithmic problem, an improved understanding of higher de-

gree polynomial maximization (in fact just cubic!) is vital to progress on central open questions

in disparate areas. This formulation immediately captures the basic problem of maximizing the

1 We note that for random polynomial optimization (as opposed to the worst-case setting of interest to this work) and

related problems, there has been considerable recent success in obtaining new algorithms via rounding sum-of-squares

relaxation of polynomial optimization formulations.
2 The work of Bhattiprolu et. al. [BGG+17] considers the variant where one intends to maximize the absolute value of

a polynomial and this distinction makes a material difference to the difficulty of the problem.
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“advantage over random assignments”3 for approximating Max-3SAT (and other CSPs). Fur-

ther, sufficiently strong (and yet far from what known hardness results and integrality gaps rule

out) approximation algorithms for special cases of degree-3 and degree-4 polynomial optimiza-

tion can refute the Small-Set Expansion [BBH+12] hypothesis (a close variant of the UGC), settle

the Aaronson-Impagliazzo-Moshkovitz [AIM14] conjecture that relates to the power of quantum

entanglement, and refute the celebrated “planted clique hypothesis” [FK08].

To summarize, there are wide gaps in our understanding of the landscape of cubic optimiza-

tion, and much of it can be attributed to the significant dearth of SDP rounding algorithms for

higher degree polynomial maximization.

1.1 Our results

In this paper, we design new rounding algorithms for SDP relaxations of cubic polynomial op-

timization and as a consequence, obtain improved guarantees for polynomial optimization over

both the unit sphere and the hypercube. Our first result gives a rounding algorithm for the canon-

ical sum-of-squares relaxation for homogeneous cubic optimization.

Theorem 1.1 (Informal, see Theorems 3.3 and 5.1). For every k > 6, n ∈ N, there is an nO(k)-time

rounding algorithm for the canonical degree-k sum-of-squares relaxation of homogeneous cubic maximiza-

tion problem (over both the unit sphere and the hypercube) that achieves an O(
√

n/k)-multiplicative ap-

proximation.

This relaxation was first analyzed in [BGG+17] to obtain similar guarantees to Theorem 1.1 but

only for the case of the unit sphere. Their rounding algorithm is based on significantly different

ideas relying on “weak decoupling” inequalities and involve reasoning about eigenvectors of the

SDP solution. In particular, such techniques seem to have no natural analogs over the Boolean

hypercube. As a result, prior to our work, there were no known bounds on the integrality gap

of the sum-of-squares relaxations of the foundational problem of homogeneous polynomial opti-

mization over the hypercube.

Our techniques in fact extend naturally to homogeneous polynomial optimization for all odd-

degree polynomials (see Appendix B). Handling even degree polynomials is related to the inherent

(and well-known) issue of non-existence of decoupling inequalities and is an outstanding open

question. Informally speaking, decoupling inequalities (Lemmas 2.9 and B.1) allow us to assume

that the underlying objective function is a tripartite polynomial (i.e., the variables can be parti-

tioned into three classes such that each non-zero monomial uses one variable from each class)

with only a constant factor difference in the optimum. Such a fact is simply not true for homoge-

neous even-degree polynomials (see Example B.2). Indeed, this is the key reason why [BGG+17]

considers the problem of maximizing the absolute value of a polynomial instead, in which case

decoupling inequalities are known for all degrees [HLZ10]. We note (see Appendix B) that for

maximizing the absolute value of a polynomial, our techniques naturally extend to homogeneous

polynomials of all degrees.

3 For example, a random assignment satisfies a 7/8 fraction of constraints for any 3SAT instance. Thus, it is natural

to ask: given an instance with optimum value 7/8 + ε, what’s the largest fraction of constraints that we can satisfy in

polynomial time? This is a more nuanced formulation of the classical question of approximating Max-3SAT.
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Compressing SDPs. Our second main result shows that the sum-of-squares relaxation can be

compressed from nO(k)-size to just 2O(k) poly(n)-size SDP while preserving the same approximation

guarantees as in Theorem 1.1. This is reminiscent, at a high-level, of the work of Guruswami and

Sinop [GS12] in the context of Max Bisection and of Barak, Raghavendra and Steurer [BRS11] for

Unique Games. Both these examples are closely related to 2-CSPs and thus quadratic polynomials.

Our work gives the first analog of such a pruning for higher-degree polynomial optimization.

Theorem 1.2 (Informal, see Theorems 4.1 and 5.2). For every k, n ∈ N, there is a 2O(k)nO(1)-time

algorithm that takes input a homogeneous multilinear cubic polynomial f (x) in n variables and outputs

an assignment that achieves an O(
√

n/k)-approximation to the optimum of f over the hypercube or the

unit sphere. Moreover, our algorithm is obtained by rounding an SDP relaxation of the cubic optimization

problem.

Theorem 1.2 improves the approximation guarantees of [BGG+17]. In particular, we obtain an

O(
√

n/ log n) approximation algorithm in polynomial time, as opposed to quasi-polynomial time

in [BGG+17]. In contrast to the prior works on pruning SoS relaxations, the proof of Theorem 1.2

relies on “derandomizing” a crucial set of inequalities that naturally arise in our rounding algo-

rithm via polynomial reweightings.

Over the n-dimensional hypercube, an O(
√

n/ log n)-approximation algorithm for homoge-

neous cubic maximization was given by Khot and Naor [KN08]. Their algorithm relies on ideas

from convex geometry and involves a randomized reduction to the classical bipartite quadratic

optimization problem. Our algorithm for Theorem 1.2 is deterministic and our guarantees on the

hypercube in the polynomial-time regime match the ones of [KN08].

Finally, we note that while prior works [GS12, BRS11] obtain smaller SDPs by pruning con-

straints and variables from the sum-of-squares SDP relaxations, our compressed SDPs are ob-

tained by adding certain auxiliary variables and constraints that are enough to imply the relevant

inequalities for the analysis of the rounding algorithm. This is similar to the work of Steurer

and Tiegel [ST21] that showed a degree reduction result for some applications in robust statistics

where one can take a high degree SoS relaxation and get a new SDP with additional variables but

a lower degree with a similar performance. However, the result of [ST21] utilizes problem-specific

structure and does not appear to be directly relevant to our applications in this work.

Certification algorithms and application to 3SAT. As a key consequence of our new rounding

algorithms, we obtain certificates of upper bounds on the true maximum of a homogeneous cubic

objective. This is because rounding algorithms immediately imply upper bounds on the integral-

ity gaps of the underlying SDP relaxations. It is often desirable (both from a practical, e.g. SAT

solving, and theoretical standpoint, e.g. refutation problems in average-case complexity) to ask for

algorithms that produce certificates on the optimum of an optimization problem. We note that the

problem of finding certifiable approximation algorithms for cubic maximization was formulated

by Trevisan in his blog post [Tre]. We refer the reader to the post for additional discussion.

In Section 6, we demonstrate a concrete advantage of our new certification algorithm by using

it to obtain an improved rounding algorithm for satisfiable 3SAT instances:

Theorem 1.3. There is a polynomial-time randomized algorithm that, given a satisfiable 3SAT formula

with n variables, finds with high probability an assignment satisfying a ( 7
8 + Ω̃(n− 3

4 ))-fraction of the

clauses.
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For comparison, the best known result of Håstad and Venkatesh [HV04] gives 7
8 + Ω

(
1√
m

)

(via random assignments), which is in general polynomially worse as m can be Ω(n3). On the

lower bound side, achieving approximation 7
8 + ε for any ε > 0 is NP-hard [Hås01].

Note that the fraction of satisfied constraints of a 3SAT formula can be written as 7
8 + f (x),

where f (x) is a non-homogeneous degree-3 polynomial (the advantage over random assignment).

Thus, due to the degree-2 part of f , the naive approach of decoupling and optimizing the degree-3

part of f (e.g., using Theorem 1.1) does not work. Our main idea is that even though f has compo-

nents of degree 1 and 2, they behave nicely when the instance is satisfiable (see Observation 6.2).

This allows us to add extra constraints to the sum-of-squares relaxation that enforce the niceness

of the degree-2 part (see Algorithm 1). We remark that this is an example of the benefit of design-

ing certifiable approximation algorithms using SDPs, as it allows us to add additional constraints

for specific applications.

We leave as future work the problem of achieving value 7
8 + Ω

(
1√
n

)
for 3SAT, which would

match our result for the degree-3 homogeneous case.

1.2 Technical overview

Our rounding algorithm. Our first main idea is a new rounding scheme based on polynomial

reweightings (introduced in [BKS17]) that at once replicates the guarantees of [BGG+17] on the

unit sphere while naturally extending (in fact, with essentially no change!) to the hypercube. Let

us elaborate on this new scheme of roundings next.

Our rounding works with decoupled polynomials — cubic polynomials of three separate classes

of variables x, y, z such that the input polynomial can be written as f (x, y, z) = ∑
n
i=1 xiqi(y, z)

for some quadratic polynomial qi := qi(y, z) = y⊤Tiz. Via classical decoupling inequalities

(Lemma 2.9), working with such polynomials is without loss of generality (at the cost of losing

only an absolute constant factor in the approximation ratio).

Informally speaking, an SDP solution is described by a linear operator Ẽ that maps low-degree

polynomials into real numbers so that Ẽ[p2] > 0 for every p that is low-degree (see Section 2.1). In

other words, the linear operator “pretends” like an expectation of a probability distribution over

the unit sphere/hypercube for the purpose of taking expectations of low-degree polynomials.

Consider the value that an SDP solution assigns to the input polynomial f . In particular,

if it so happens that ∑i |Ẽ[qi]| is at least an O(
√

k/n)-fraction of the SDP objective, then by us-

ing the Grothendieck inequality (Fact 2.5) to round y and z into integral y, z and setting xi to be

sign(qi(y, z)), we obtain an O(
√

k/n)-approximation to the optimum. Now, this reasoning relies

on the SDP solution Ẽ giving a large value to ∑i |qi|, that is, ∑i |Ẽ[qi]| being large.

Of course, there is no reason for such a property to hold for the actual SDP solution we com-

pute. Our key idea is to show that there is an efficiently computable transformation from the

initial Ẽ into a new Ẽ′ with the property that 1) Ẽ′ continues to have an objective value as large as

the one we began with, and 2) ∑i |Ẽ′[qi]| is at least an O(
√

k/n)-fraction of the SDP objective. This

transformation is obtained by “reweighting” (a generalization of “conditioning” procedure first

used in [BKS17] for rounding high-degree sum-of-squares SDP relaxations) the original solution

Ẽ by an appropriate sum-of-squares polynomial r(x). In fact, r(x) is chosen to be an appropriate

random polynomial in our analysis. Informally speaking, if one thinks of the SDP solution as an

actual probability distribution over x, y, z, then our reweighting can be thought of as shifting mass

5



around a randomly chosen direction in x to ensure that the ∑i |Ẽ′[qi]| becomes large enough.

Compression via hitting sets for halfspaces. Constructing the compressed SDP for Theorem 1.2

involves adding some constraints that enforce a certain appropriate variant of anti-concentration

inequalities to hold for all projections of the SDP solution. Such inequalities are implied by the

constraints in a degree-k sum-of-squares relaxation, but would cost an nO(k)-bound in the size of

the resulting SDP. Our main observation is that we can obtain the relevant anti-concentration in-

equalities by explicitly forcing constraints on an appropriate “hitting set” for halfspaces. To imple-

ment this, we need an efficient construction of a set of 2knO(1) points from {−1, 1}n (respectively,

2O(k)nO(1) elements of the unit sphere) such that for every vector w there is at least one element x

of the hitting set such that 〈x, w〉 > Ω(
√

k/n)‖w‖1 (respectively, at least one element x such that

〈x, w〉 > Ω(
√

k/n)‖w‖2). The desired condition occurs with probability 2−Θ(k) for a Rademacher

(respectively, Gaussian) choice of x, so the required hitting set property is satisfied by the support

of any pseudorandom generator that ε-fools all linear threshold functions for ε = 2−Θ(k). To obtain

the compressed SDPs we desire, we need ε-PRGs (or even ε-Hitting Set Generators) for all linear

threshold functions with optimal seed length O(log n + log(1/ε)). However, the best known seed

length for an efficient, explicit construction is O(log n + log2(1/ε)) [MZ10], which amounts to a

hitting set of size nO(log n) in our setting. Instead, we give an elementary construction of a set as

above with nearly optimal size that yields us our compressed SDP.

1.3 Organization of the paper

In Section 2, we introduce various tools and facts needed in the sequel. We finish that section by

reformulating the algorithm of Khot and Naor [KN08] to pave the way for the presentation of our

algorithmic techniques.

In Section 3, we present our rounding algorithms for the canonical degree-k SoS relaxation of

cubic optimization over the hypercube.

In Section 4, we state and analyze our compressed SDP relaxation that achieves better approx-

imation ratio for cubic optimization over the hypercube.

In Section 5, we adapt the techniques to show the analogous results over the unit sphere.

In Section 6, we illustrate the power of certification algorithms by giving an improved approx-

imation for Max-3SAT in the satisfiable regime.

In Appendix A, we describe an alternative simple certification algorithm that achieves approx-

imation O(
√

n) for cubic optimization over the hypercube.

In Appendix B, we show how to generalize our techniques to higher-degree polynomials.

2 Preliminaries

2.1 Sum-of-Squares SDPs

We refer the reader to the monograph [FKP19] and the lecture notes [BS16] for a detailed exposi-

tion of the sum-of-squares method and its usage in algorithm design.

A degree-ℓ pseudo-distribution µ over variables x1, x2, . . . , xn corresponds to a linear operator Ẽµ

that maps polynomials of degree 6 ℓ to real numbers and satisfies Ẽµ 1 = 1 and Ẽµ[p2] > 0

6



for every polynomial p(x1, x2, . . . , xn) of degree 6 ℓ/2. We say that such a pseudo-distribution

satisfies the hypercube constraints if Ẽµ[px2
i ] = Ẽµ[p] for every polynomial p of degree 6 ℓ − 2

and every i ∈ [n]. We say that such a pseudo-distribution satisfies the unit sphere constraints if

Ẽµ[‖x‖2
2 p] = Ẽµ[p] for every p of degree 6 ℓ− 2.

Given a polynomial p (with the ℓ1-norm of the coefficients being ‖p‖1) over x1, x2, . . . , xn, a

pseudo-distribution of degree ℓ over the unit sphere or the hypercube that maximizes p within an

additive ε‖p‖1 error can be found in time nO(ℓ) polylog(n/ε) via the ellipsoid method.

Reweighting. Given a pseudo-distribution µ over the unit sphere or the hypercube, a reweighting

of µ by a sum-of-squares polynomial q satisfying Ẽµ[q] > 0 is a pseudo-distribution µ′ that maps

any polynomial p to Ẽµ′ [p] = Ẽµ[pq]/Ẽµ [q]. For any µ of degree ℓ and q of degree r < ℓ, µ′ is

a pseudo-distribution of degree at least ℓ − r. Furthermore, if µ satisfies the unit sphere (or the

hypercube) constraints then so does µ′ as long as r 6 ℓ− 2.

Sum-of-squares proofs. Let f1, f2, . . . , fm and g be multivariate polynomials in x. A sum-of-

squares proof that the constraints { f1 > 0, . . . , fm > 0} imply g > 0 consists of sum-of-squares

polynomials (pS)S⊆[m] such that g = ∑S⊆[m] pS ∏i∈S fi. The degree of such a sum-of-squares proof

equals the maximum of the degree of pS ∏i∈S fi over all S appearing in the sum above. We write

{ fi > 0, ∀i ∈ [m]} t
x {g > 0} where t is the degree of the sum-of-squares proof.

We will rely on the following basic connection between SoS proofs and pseudo-distributions:

Fact 2.1. Suppose { fi > 0, ∀i ∈ [m]} t {g > 0} for some polynomials fi and g. Let µ be a pseudo-

distribution of degree > t satisfying { fi > 0}i∈[m]. Then, Ẽµ[g] > 0.

We next state some standard facts (see [FKP19] for references).

Fact 2.2 (SoS generalized triangle inequality). Let k ∈ N and x = (x1, . . . , xn) be indeterminates.

{xi > 0, ∀i ∈ [n]} k

x1,...,xn





(
1

n

n

∑
i=1

xi

)k

6
1

n

n

∑
i=1

xk
i



 .

Moreover, if k is even, then

k

x1,...,xn





(
1

n

n

∑
i=1

xi

)k

6
1

n

n

∑
i=1

xk
i



 .

Note that the k = 2 case is the SoS version of the Cauchy-Schwarz inequality for vectors.

Fact 2.3 (Cauchy-Schwarz for pseudo-distributions). Let f , g be polynomials of degree at most d in

indeterminate x. Then, for any degree-2d pseudo-distribution µ over x, we have

Ẽµ[ f g] 6
√

Ẽµ[ f 2]
√

Ẽµ[g2] .

Fact 2.4 (Hölder’s inequality for pseudo-distributions). Let f , g be polynomials of degree at most d in

indeterminate x, and fix any even t ∈ N. Then, for any degree-td pseudo-distribution µ over x, we have

Ẽµ[ f
t−1g] 6 (Ẽµ[ f

t])
t−1

t (Ẽµ[g
t])

1
t .

Furthermore, for any t ∈ N and any degree-2td pseudo-distribution µ, we have Ẽµ

[
f 2t−2

]
6 Ẽµ

[
f 2t
] t−1

t .
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2.2 Basic rounding algorithms

We state here three standard rounding algorithms for the quadratic case.

Fact 2.5 (Grothendieck rounding [AN06]). There is a rounding algorithm that, given any degree-2

pseudo-distribution µ over x, y ∈ {±1}n , outputs x, y ∈ {±1}n such that for any matrix M ∈ Rn×n,

x⊤My > 1
KG

· Ẽµ

[
x⊤My

]
, where KG < 1.783 is the Grothendieck constant.

Lemma 2.6 (Lossless rounding on the unit sphere). Given any degree-2 pseudo-distribution µ over

x ∈ Sn−1, there is a rounding algorithm that outputs x ∈ Sn−1 such that for any matrix M ∈ Rn×n,

x⊤Mx > Ẽµ

[
x⊤Mx

]
.

Proof. Let X = Ẽµ

[
xx⊤

]
and let X = ∑

n
i=1 λiviv

⊤
i be its eigen-decomposition with λi > 0 and

vi ∈ Sn−1 for all i ∈ [n]. Since µ is over the unit sphere, tr(X) = ∑
n
i=1 λi = 1, hence {λi}i∈[n]

defines a valid probability distribution. Now if we sample x = vi with probability λi for all

i ∈ [n], we get E[x⊤Mx] = ∑
n
i=1 λiv

⊤
i Mvi = 〈X, M〉 = Ẽµ

[
x⊤Mx

]
. In particular one of v1, . . . , vn

must have quadratic form at least Ẽµ

[
x⊤Mx

]
.

Theorem 2.7 (Charikar-Wirth rounding [CW04]). Given any degree-2 pseudo-distribution µ over x ∈
{±1}n, for any T > 0, there is a polynomial-time sampleable distribution D supported on {±1}n such

that for any matrix M ∈ Rn×n with zero diagonal entries,

Ex∼D
[

x⊤Mx
]
>

1

T2
· Ẽµ

[
x⊤Mx

]
− 8e−

T2

2 ∑
i,j∈[n]

|Mij| .

In particular, if µ is an optimal pseudo-distribution for the degree-2 SoS relaxation of maxx∈{±1}n x⊤Mx,

then by picking T = Θ(
√

log n),

Ex∼D
[

x⊤Mx
]
> Ω

(
1

log n

)
max

x∈{±1}n
x⊤Mx .

2.3 Anti-concentration

We will need the following anti-concentration result that can be deduced from standard hyper-

contractivity (see e.g. [AGK04, Lemma 3.2]).

Lemma 2.8. Let D be a distribution over Rn satisfying the following: there exists a constant B > 0

such that Ex∼D[p(x)4] 6 Bd · Ex∼D
[
p(x)2

]2
for every degree-d polynomial p. Then, for any degree-d

polynomial p,

Pr
x∼D

[p(x) > ED p] > 2−
4
3 B−d .

Relevant special cases for what follows are when D is the uniform distribution over {±1}n or

the standard Gaussian distribution N (0, In), which both satisfy the assumption with B = 9 (see

e.g. for reference [O’D14, Theorem 9.21] and [Bog98, Theorem 1.6.2]).
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2.4 Decoupling

A standard technique for polynomial optimization problems is decoupling, which relates the opti-

mum of 〈T, x⊗3〉 (the “coupled” polynomial) to the optimum of 〈T, x ⊗ y ⊗ z〉 (the “decoupled”

polynomial). For polynomial optimization over the n-dimensional hypercube or the unit sphere,

these two quantities are within a constant factor from each other when the polynomial has degree 3.

Thus, in the rest of the paper, we will assume that the given polynomial is already decoupled.

Lemma 2.9 (Decoupling [KN08, HLZ10]). Let Ω be either {−1, 1}n or Sn−1. Consider a multilinear

homogeneous degree-3 polynomial in n variables f (x) = ∑
n
i,j,k=1 Tijkxixjxk (where T is a symmetric 3-

tensor). Consider also the decoupled version of f : f̃ (x, y, z) = ∑
n
i,j,k=1 Tijkxiyjzk. Then,

max
x∈Ω

f (x) >
2

9
· max

x,y,z∈Ω
f̃ (x, y, z) .

In Appendix B, we prove a generalization of Lemma 2.9 to all odd-degree polynomials.

2.5 The algorithm of Khot and Naor

In this section, we describe the algorithm of Khot and Naor [KN08] yielding an approximation of

O(
√

n/ log n) to the maximum of f (x, y, z) = ∑
n
i,j,k=1 Tijkxiyjzk over x, y, z ∈ {±1}n. The original

algorithm was done via a reduction to estimating the L1-diameter of some convex body. We refor-

mulate the algorithm in a more direct way, which also serves as inspiration for our algorithms in

Section 3:

1. Sample x ∼ {±1}n . Let fx(y, z) := 〈T, x ⊗ y ⊗ z〉 = ∑
n
i=1 xi(y

⊤Tiz) be the (decoupled)

degree-2 polynomial in variables y and z. Here Ti is a slice of the tensor T, that is, an n × n

matrix.

2. Using Grothendieck rounding (Fact 2.5), find y, z ∈ {±1}n which achieve a constant factor

approximation for maxy,z∈{±1}n fx(y, z).

3. Finally, repeat steps 1 and 2 poly(n) times and output the best solution (x, y, z) obtained.

The key lemma to analyze this algorithm is the following anti-concentration inequality.

Lemma 2.10 (Lemma 3.2 of [KN08]). For any δ ∈ (0, 1/2), there is a constant c(δ) > 0 such that for

any a ∈ Rn, if ε1, . . . , εn are i.i.d. {±1} random variables, then

Pr

[
n

∑
i=1

aiε i >

√
δ log n

n
· ‖a‖1

]
>

c(δ)

nδ
.

The proof of Khot and Naor’s result easily follows from Lemma 2.10. Indeed, let x∗, y∗, z∗ ∈
{±1}n be an optimal solution. First observe that it is always optimal to set x∗i := sgn(〈Ti, y∗⊗ z∗〉),
so that OPT := f (x∗, y∗, z∗) = ∑

n
i=1 |〈Ti, y∗ ⊗ z∗〉|. Then, for any x ∈ {±1}n , the algorithm outputs

(x, y, z) such that

f (x, y, z) > Ω(1) · max
y,z∈{±1}n

f (x, y, z) > Ω(1) · f (x, y∗, z∗) .

9



However, by Lemma 2.10, with at least inverse polynomial probability, a random x satisfies

f (x, y∗, z∗) =
n

∑
i=1

xi〈Ti, y∗ ⊗ z∗〉 > Ω(1) ·
√

log n

n
·

n

∑
i=1

|〈Ti, y∗ ⊗ z∗〉| = Ω(1) ·
√

log n

n
·OPT .

Thus, by repeating poly(n) times, with high probability the algorithm outputs an assignment that

has value Ω
(√

log n
n

)
·OPT.

3 Rounding SoS relaxations for cubic optimization

In this section, we present our rounding algorithms for the canonical degree-k SoS relaxation of

cubic optimization over the hypercube.

• In Section 3.1, we show how to achieve approximation O(
√

n) by rounding the canonical

degree-6 SoS relaxation via polynomial reweightings.

• In Section 3.2, we extend the previous argument to achieve approximation O(
√

n
k ) by round-

ing the canonical degree-(6k) SoS relaxation. The additional key idea is a sum-of-squares

proof of a certain anti-concentration argument.

3.1 An O(
√

n)-factor approximation

We start by giving a simple polynomial-time certification and rounding algorithm via constant-

degree SoS that achieves approximation O(
√

n) for cubic optimization over the hypercube. Our

key technical ingredient is a new use of polynomial reweightings of pseudo-distributions (see

Lemma 3.2).

Theorem 3.1. For any decoupled homogeneous degree-3 polynomial f (x, y, z) = ∑
n
i,j,k=1 Tijkxiyjzk, the

degree-6 SoS relaxation of maxx,y,z∈{±1}n f (x, y, z) has integrality gap at most O(
√

n).

Furthermore, there is a polynomial-time rounding algorithm that, given a degree-6 pseudo-distribution

µ with SOS := Ẽµ f (x, y, z) > 0, outputs a solution x, y, z ∈ {±1}n with value f (x, y, z) > Ω
(
SOS√

n

)
.

We describe another algorithm outputting a certificate with similar guarantees in Appendix A.

In comparison, the proof in this section will come together with a rounding and will allow us to

build up towards a more general tradeoff between time and approximation in Section 3.2.

Recall from Section 2.5 that the strategy of [KN08] is to first sample x ∼ {±1}n and then solve

for y and z using Grothendieck rounding. One might expect that a similar strategy works to

round an optimal SoS solution. However, given an optimal pseudo-distribution µ, it is not clear

how Ẽµ ∑
n
i=1 xi(y

⊤Tiz) relates to the SoS value Ẽµ ∑
n
i=1 xi(y

⊤Tiz). In fact, the former can be much

smaller than the latter or even zero.

Denote qi(y, z) := y⊤Tiz for convenience. Our key idea is that even though Ẽµ〈x, q〉 may be

small, we can reweight the pseudo-distribution µ and get another pseudo-distribution µ′ such that

Ẽµ′〈x, q〉 & (Ẽµ〈x, q〉2)1/2. Furthermore, the quantity on the right-hand side can be related to the

SoS value (for a typical x). One may view this procedure as raising the (pseudo-) expectation of a

random variable to be close to its (pseudo-) standard deviation, which is reminiscent of the scalar

fixing lemma of [BKS17].

We capture this idea in the following lemma:
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Lemma 3.2. Let p(x1, . . . , xn) be a degree-t polynomial and let µ be a degree-3t pseudo-distribution over

(x1, . . . , xn). There is reweighting of µ by a degree-2t polynomial such that the resulting degree-t pseudo-

distribution µ′ satisfies ∣∣∣Ẽµ′ [p]
∣∣∣ > 1

3
·
√

Ẽµ [p2] .

Proof. Let m :=
√

Ẽµ [p2] > 0. We can assume that
∣∣∣Ẽµ[p]

∣∣∣ < m
3 , otherwise we are done without

any reweighting.

First, suppose that
∣∣∣Ẽµ

[
p3
]∣∣∣ > m3

3 . Reweight µ by the degree-2t SoS polynomial p2 and let µ′

be the resulting pseudo-distribution. Then we have
∣∣∣Ẽµ′ [p]

∣∣∣ =
∣∣∣∣

Ẽµ[p3]
Ẽµ[p2]

∣∣∣∣ >
1
3 ·
√

Ẽµ [p2].

Now suppose that
∣∣∣Ẽµ

[
p3
]∣∣∣ < m3

3 . Reweight µ by the degree-2t SoS polynomial (p + m)2 and

let µ′ be the resulting pseudo-distribution. Note that:

Ẽµ

[
(p + m)2

]
= 2m2 + 2m · Ẽµ [p] ∈

[
4m2

3
,

8m2

3

]
,

where we used
∣∣∣Ẽµ[p]

∣∣∣ < m
3 . In particular, we are reweighting by a polynomial with non-zero

pseudo-expectation, so this is a well-defined operation. Moreover,

Ẽµ

[
(p + m)2p

]
> 2m · Ẽµ

[
p2
]
−
∣∣∣Ẽµ

[
p3
]∣∣∣− m2 ·

∣∣∣Ẽµ[p]
∣∣∣ > 4m3

3
.

Putting everything together, we obtain
∣∣∣Ẽµ′ [p]

∣∣∣ > 1
2 ·
√

Ẽµ [p2].

Thus, we get the desired result in both cases.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let qi(y, z) := y⊤Tiz for each i ∈ [n]. For simplicity of notation, we will drop

the dependence on y, z and denote q = (q1, . . . , qn). Then, we have

SOS =
n

∑
i=1

Ẽµ[xiqi] 6
n

∑
i=1

√
Ẽµ[q2

i ] 6

√
n ·

n

∑
i=1

Ẽµ[q2
i ] =

√
n · Ẽµ‖q‖2

2 ,

by Cauchy-Schwarz and its pseudo-expectation version (Fact 2.3). Next, since Eh∼{±1}n〈v, h〉2 =

‖v‖2
2 is a polynomial identity,

SOS
2 6 n · Eh∼{±1}n Ẽµ 〈q, h〉2 , (1)

where we recall that q = (q1, . . . , qn) are degree-2 polynomials in y, z. We now describe the round-

ing algorithm.

1. Sample h ∼ {±1}n, and set x := h.

2. Reweight the pseudo-distribution µ via Lemma 3.2 to get a degree-2 pseudo-distribution µ′

such that
∣∣∣Ẽµ′〈q, h〉

∣∣∣ > 1
3

√
Ẽµ〈q, h〉2.
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3. Use Grothendieck rounding (Fact 2.5) on µ′ to obtain solutions y, z ∈ {±1}n satisfying

y⊤(∑n
i=1 hiTi)z > 1

KG
·
∣∣∣Ẽµ′〈q, h〉

∣∣∣ (we can get the guarantees with the absolute value by flip-

ping the sign of h).

First, note that Ẽµ〈q, h〉2 is a degree-2 polynomial in h, so by Paley-Zygmund inequality,

Pr
h∼{±1}n

[
Ẽµ〈q, h〉2 >

SOS
2

n

]
> Ω(1) ,

meaning that we get a “good” h with constant probability. For a good h, it also holds that

f (x, y, z) >
1

KG

∣∣∣Ẽµ′〈q, h〉
∣∣∣ > 1

3KG

√
Ẽµ〈q, h〉2 > Ω

(
SOS√

n

)
.

Thus, repeating the above poly(n) times, we can obtain a solution with value Ω
(
SOS√

n

)
with high

probability. This completes the proof.

3.2 Going beyond O(
√

n)-approximation via higher-degree SoS

We now switch to a general time/approximation tradeoff for the problem by rounding higher

levels of the SoS hierarchy.

Theorem 3.3. Let k, n be integers such that 2 6 k 6 n. For any decoupled homogeneous degree-3 polyno-

mial f (x, y, z) = ∑
n
i,j,k=1 Tijkxiyjzk, the canonical degree-(6k) SoS relaxation of maxx,y,z∈{±1}n f (x, y, z)

has integrality gap at most O
(√

n
k

)
.

Furthermore, there is an nO(k)-time rounding algorithm that, given a degree-(6k) pseudo-distribution

with SOS := Ẽµ f > 0, outputs a solution x, y, z ∈ {±1}n with value f (x, y, z) > Ω
(√

k
n

)
· SOS.

Recall that the
√

n approximation factor in the previous section was coming from relating

the SoS value Ẽµ〈x, q〉 to a quantity of the form Eh∼{±1}nẼµ〈h, q〉2. To make use of higher lev-

els of the SoS hierarchy, we will now connect the SoS value to higher moments of the form

Eh∼{±1}nẼµ〈h, q〉2k. The proof of Theorem 3.3 will then follow from a high-degree version of the

polynomial reweighting from Lemma 3.2.

One can interpret the inequality from the previous section Ẽµ〈x, q〉2 6 n · Eh∼{±1}nẼµ〈h, q〉2 as

the SoS analog of the inequality ‖q‖2
1 6 n · ‖q‖2

2 = n · Eh∼{±1}n〈h, q〉2 that holds for any q ∈ Rn

by Cauchy-Schwarz and an explicit variance equality. Our higher-level proof also has a classical

analog, namely:

‖q‖1 6 O(1) ·
√

n

k
·
(

Eh∼{±1}n〈h, q〉2k
) 1

2k
. (2)

Such an inequality holds for any q ∈ Rn [Mon90]. To see that, decompose q and h into k (arbitrary)

blocks q(1), . . . , q(k) and h(1), . . . , h(t) of size roughly n
k . By Paley-Zygmund inequality, we get that∣∣∣〈q(i), h(i)〉

∣∣∣ > Ω(1) ·
∥∥∥q(i)

∥∥∥
2
> Ω(1) ·

√
k
n

∥∥∥q(i)
∥∥∥

1
holds with at least constant probability for any

fixed i ∈ [k]. So with probability at least 2−O(k) we have |〈q, h〉| > Ω(1) ·
√

k
n‖q‖1, which in turn

implies Eq. (2).
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Although this proof is streamlined, the part using Paley-Zygmund and independence across

the k blocks does not directly translate into a sum-of-squares proof. We now give a different and

degree-O(k) sum-of-squares proof of the inequality.

Lemma 3.4. Let k < n ∈ N, and let x = (x1, . . . , xn) be indeterminates and v = (v1, . . . , vn) be such

that each vi is a polynomial of degree 6 t. Then,

{
x2

i = 1, ∀i ∈ [n]
}

2(t+1)k

x,v
Eh∼{±1}n

[
〈h, v〉2k

]
>

(
k

4n

)k

〈x, v〉2k .

Proof. We divide [n] into k blocks, each of size at most ⌈ n
k ⌉. For t ∈ [k], let x(t), v(t) be the vectors

x, v restricted to the t-th block. Then,

2(t+1)k

x,v 〈x, v〉2k =

(
k

∑
t=1

〈x(t), v(t)〉
)2k

6 2k · Eε∼{±1}k

(
k

∑
t=1

εt〈x(t), v(t)〉
)2k

, (3)

since (∑k
t=1 εt〈x(t), v(t)〉)2k is a square for each ε ∈ {±1}k . Expanding the above and using the fact

that all odd moments of ε ∼ {±1}k vanish, we get

Eε∼{±1}k

(
k

∑
t=1

εt〈x(t), v(t)〉
)2k

= ∑
γ∈Nk:|γ|=k

cγ

k

∏
t=1

〈x(t), v(t)〉2γt , (4)

where cγ := (2k)!

∏
k
t=1(2γt)!

. Here |γ| = ∑
k
t=1 γt and γ represents a multiset of [k] of size |γ|. Next, by

SoS Cauchy-Schwarz (Fact 2.2), we have that

{
x2

i = 1, ∀i ∈ [n]
}

2(t+1)

x,v 〈x(t), v(t)〉2 6 ‖x(t)‖2
2 · ‖v(t)‖2

2 6

(
2n

k

)
· ‖v(t)‖2

2 ,

since x(t) has dimension at most ⌈ n
k ⌉ 6 2n

k . Next, using the identity ‖v(t)‖2
2 = Eh(t)〈h(t), v(t)〉2

where h(t) ∼ {±1}dim(x(t)),

{
x2

i = 1, ∀i ∈ [n]
}

2(t+1)k

x,v
k

∏
t=1

〈x(t), v(t)〉2γt 6
k

∏
t=1

(
2n

k

)γt

‖v(t)‖2γt

2

=

(
2n

k

)k k

∏
t=1

(
Eh(t)〈h(t), v(t)〉2

)γt

6

(
2n

k

)k k

∏
t=1

Eh(t)〈h(t), v(t)〉2γt ,

where the last inequality uses Fact 2.2. Combining the above with Eq. (3) and (4), we have

{
x2

i = 1, ∀i ∈ [n]
}

2(t+1)k

x,v 〈x, v〉2k 6

(
4n

k

)k

· Eh∼{±1}n ∑
γ∈Nk:|γ|=k

cγ

k

∏
t=1

〈h(t), v(t)〉2γt .

Finally, since h(1), . . . , h(k) are uniformly random Boolean vectors, multiplying h(t) by εt ∼ {±1}
does not change the distribution. Thus, applying Eq. (4) again, we get

Eh ∑
γ∈Nk:|γ|=k

cγ

k

∏
t=1

〈h(t), v(t)〉2γt = EhEε

(
k

∑
t=1

εt〈h(t), v(t)〉
)2k

= Eh

(
k

∑
t=1

〈h(t), v(t)〉
)2k

= Eh〈h, v〉2k .

This completes the proof.
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Our second key ingredient is the analog of Lemma 3.2 for high moments.

Lemma 3.5. Let k ∈ N. Let p be a degree-t polynomial in variables x ∈ Rn, and let µ be a degree-(2k+ 2)t

pseudo-distribution. There is a degree-2kt reweighting of µ such that the resulting pseudo-distribution µ′

satisfies
∣∣∣Ẽµ′ p

∣∣∣ > 1

3
·
(

Ẽµ

[
p2k
]) 1

2k
.

Proof. Let m :=
(

Ẽµ

[
p2k
]) 1

2k
> 0.

First, consider reweighting µ by the degree-2kt sum-of-squares polynomial p2k and denote by

µ1 the resulting pseudo-distribution. Then, we have
∣∣∣Ẽµ1 [p]

∣∣∣ = |Ẽµ[p2k+1]|
m2k . We are done if this is

larger than m
3 , hence it remains to handle the case

∣∣∣Ẽµ

[
p2k+1

]∣∣∣ 6 m2k+1

3 .

Now, reweight µ by p2k−2 and denote by µ2 the resulting pseudo-distribution. Note that by

the pseudo-distribution version of Cauchy-Schwarz (Fact 2.3), as long as µ is a degree-(2k + 2)t

pseudo-distribution,

0 < Ẽµ

[
p2k
]2

6 Ẽµ

[
p2k−2

]
· Ẽµ

[
p2k+2

]
,

so that Ẽµ

[
p2k−2

]
> 0 and the reweighting is well-defined. Furthermore, we have

∣∣∣Ẽµ2 [p]
∣∣∣ =

|Ẽµ[p2k−1]|
Ẽµ[p2k−2]

. Once again, we are done if this is larger than m
3 , so we assume from now on that

∣∣∣Ẽµ

[
p2k−1

]∣∣∣ 6 m
3 · Ẽµ

[
p2k−2

]
.

Finally, we consider the reweighting of µ by the SoS polynomial (p + m)2 p2k−2 and call µ3 the

resulting pseudo-distribution. We have:

Ẽµ

[
(p + m)2p2k−2

]
= m2k + 2m · Ẽµ

[
p2k−1

]
+ m2 · Ẽµ

[
p2k−2

]
∈
(

0,
8m2k

3

]
,

where we also use Ẽµ

[
p2k−2

]
6 m2k−2 (which follows from Fact 2.4). In particular, the reweighting

for µ3 is well-defined. Similarly, we have

Ẽµ

[
(p + m)2p2k−1

]
> 2m2k+1 −

∣∣∣Ẽµ

[
p2k+1

]∣∣∣− m2 ·
∣∣∣Ẽµ

[
p2k−1

]∣∣∣ > 4m2k+1

3
.

Thus, Ẽµ3 [p] >
m
2 holds in this case, which concludes the proof.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Similarly to the proof of Theorem 3.1, we start by defining qi = qi(y, z) =

y⊤Tiz. By Fact 2.4 and Lemma 3.4,

SOS
2k =

(
Ẽµ〈x, q〉

)2k
6 Ẽµ〈x, q〉2k 6 O

(n

k

)k
ẼµEh∼{±1}n〈h, q〉2k .

Here we require µ to be a degree-6k pseudo-distribution.

Since h 7→ Ẽµ〈q, h〉2k is a degree-2k polynomial, by anti-concentration of low-degree polyno-

mials (Lemma 2.8), we can sample h ∈ {±1}n such that
(

Ẽµ〈q, h〉2k
)1/2k

> Ω
(√

k
n

)
· SOS with

probability at least 2−O(k).

The rounding algorithm is as follows,
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1. Sample h ∼ {±1}n and set x = h.

2. Reweight the pseudo-distribution via Lemma 3.5 such that |Ẽµ′〈q, h〉| > 1
3

(
Ẽµ〈q, h〉2k

)1/2k
.

The SoS degree required for the reweighting is 2(2k + 2) 6 6k.

3. Use Grothendieck rounding (Fact 2.5) on µ′ to obtain solutions y, z ∈ {±1}n for the quadratic

polynomial y⊤(∑n
i=1 hiTi)z.

The Grothendieck rounding gives us solutions y, z ∈ {±1}n with value Ω(1) · |Ẽµ′〈q, h〉|. Thus,

with probability at least 2−O(k), we get assignments x, y, z ∈ {±1}n such that f (x, y, z) > Ω
(√

k
n

)
·

SOS. This completes the proof.

4 Polynomial-size SDPs via compressed SoS relaxations

This section is dedicated to the proof of the following theorem.

Theorem 4.1. Let k, n be integers such that 1 6 k 6 n. There is a 2O(k)nO(1)-time certification algo-

rithm that, given a decoupled homogeneous degree-3 polynomial f (x, y, z) = ∑16i,j,k6n Tijkxiyizk achieves

O(
√

n/k)-approximation to OPT := maxx,y,z∈{±1}n f (x, y, z). Moreover, there is a corresponding round-

ing algorithm running in 2O(k)nO(1) time that outputs a solution x, y, z ∈ {±1}n with value f (x, y, z) >

Ω
(√

k
n

)
·OPT.

Roughly, we will proceed by “compressing” the SDP relaxations analyzed in Section 3. We

will use some explicit hitting set of size 2knO(1) and use it to define some constant-degree SoS

relaxations with 2knO(1) variables and one additional axiom.

4.1 The blockwise construction of the hitting set

Before explaining how to write down the relaxations, we describe the construction of our hitting

set over a small sample space that “fools” high moments in every direction. We will mimic the

anti-concentration proof from Section 3.2 by decomposing the n-dimensional vectors into k blocks.

Definition 4.2. Let n, k ∈ N such that k divides n. Define the distribution D over x̂ ∈ {±1}n as

follows.

1. Sample b̂ from a 4-wise independent distribution over {±1} n
k , that is, let b̂ = f (s), where

f : {±1}r → {±1} n
k is a 4-wise independent pseudorandom generator with seed s ∼ {±1}r

and r = O(log n).

2. Sample ĉ ∼ {±1}k independently of b̂.

3. Let x̂ := ĉ ⊗ b̂. In other words, decompose x̂ into k blocks x̂(1), . . . , x̂(k) of size n
k and set

x̂(i) := ĉi · b̂ for all i ∈ [k].

The following observation can be deduced for example from the classical construction of k-

wise independent sets of random variables [Jof74].
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Claim 4.3. The distribution D can be obtained as the uniform distribution over a sample space of size

2knO(1). In particular, for any x ∈ supp(D), Prx̂∼D [x̂ = x] > 2−kn−O(1).

We will also need the following result, which is a direct consequence of the Paley-Zygmund

inequality and the 4-wise independence of b̂.

Claim 4.4. For all w ∈ R
n
k , Prb̂

[∣∣∣〈b̂, w〉
∣∣∣ > 1

2‖w‖2

]
> Ω(1).

Finally, the following lower bound on the moments of x̂ will be the key ingredient to prove

that our relaxation provides a correct certificate to the optimum.

Lemma 4.5 (Large moments in every direction). For all w ∈ Rn,

Ex̂∼D〈x̂, w〉2k > Ω

(
k

n

)k

n−O(1)‖w‖2k
1 .

Proof. We first decompose w into k blocks w(1), . . . , w(k) of size n
k , in such a way that 〈x̂, w〉 =

∑
k
i=1 ĉi〈b̂, w(i)〉. Now for any fixed block i ∈ [k], we know from Claim 4.4 that with at least constant

probability over b̂, it holds that |〈b̂, w(i)〉| > 1
2‖w(i)‖2 > 1

2

√
k
n‖w(i)‖1, where the last inequality

follows from Cauchy-Schwarz. In turn, by linearity of expectation,

E
b̂

[
k

∑
i=1

∣∣∣〈b̂, w(i)〉
∣∣∣
]
> Ω(1) ·

√
k

n
‖w‖1 .

In particular, there exists some x ∈ supp(D) satisfying |〈x, w〉| > Ω(1) ·
√

k
n‖w‖1. By Claim 4.3,

this x must be drawn with probability at least 2−kn−O(1) from D. Finally, we apply Markov’s

inequality to get

Ex̂∼D〈x̂, w〉2k > Ω

(
k

n

)k

‖w‖2k
1 Pr

x̂∼D

[
|〈x̂, w〉| > Ω(1) ·

√
k

n
‖w‖1

]
> Ω

(
k

n

)k

n−O(1)‖w‖2k
1 .

This concludes the proof.

4.2 Proof of Theorem 4.1

We are now ready to state and analyze the SDP relaxation. The high-level intuition is the follow-

ing: write qi := ∑j,k Tijkyjzk for all i ∈ [n], so that our goal is now to maximize 〈x, q〉, which by

symmetry is equivalent to maximizing 〈x, q〉2. Instead of maximizing over x ∈ {±1}n we essen-

tially pick a random x̂ from a distribution D that has large 2k-th moments in every direction. Then

we replace the objective function ED maxw〈x̂, q〉2 by the following proxy:

max
µ pseudo-distribution on w

Ex̂∼DẼµ〈x̂, q〉2(k+1)

Ex̂∼DẼµ〈x̂, q〉2k
.

As k grows, this yields a sequence of increasingly better approximations leveraging higher mo-

ments of the variables. Since expanding the 2k-th powers would require solving an SDP of size

nΩ(k), we introduce auxiliary variables {Mx̂} corresponding to 〈x̂, q〉k in combinatorial solutions.

Proof of Theorem 4.1. Assume without of loss of generality that k divides n. Let D be the pseudo-

random distribution from Definition 4.2. Furthermore, we fix a guess α > 0 for the value of the

optimum of the cubic optimization problem (the final certification and rounding algorithms will

be obtained by binary searching for the best possible value of α).
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The relaxation. We solve for feasibility the degree-12 SoS program over the following variables:

• variables yj and zk for all j, k ∈ [n]. To lighten notations we let qi := qi(y, z) = ∑16j,k6n Tijkyjzk

for all i ∈ [n] (each qi is a degree-2 polynomial) and write q = (q1, . . . , qn).

• variables Mx for each x ∈ supp(D).

and under the following additional polynomial constraints:

y2
j = 1 for all j ∈ [n] ,

z2
k = 1 for all k ∈ [n] ,

Ex̂∼D
[
M2

x̂

(
〈x̂, q〉2 − α2

)]
> 0 . (5)

By construction of D, the relaxation has 2knO(1) variables and constraints.

The rounding algorithm. First, we check that any feasible solution to the SoS program can be

rounded into an integral solution x, y, z ∈ {±1}n achieving value Ω(α). Suppose that there exists

some degree-12 pseudo-distribution µ (over y, z and Mx) satisfying all the constraints. Then by

Eq. (5), there exists x ∈ supp(D) satisfying

α2 6
Ẽµ M2

x〈x, q〉2

Ẽµ M2
x

= Ẽµ′〈x, q〉2 ,

where µ′ is the degree-6 pseudo-distribution obtained by reweighting µ by the SoS polynomial

M2
x. We now use Lemma 3.2 to construct from µ′ a degree-2 pseudo-distribution µ′′ that satisfies

Ẽµ′〈x, q〉2 6 9
(

Ẽµ′′〈x, q〉
)2

.

Finally we use Grothendieck rounding (Fact 2.5) on µ′′ to find y, z ∈ {±1}n such that

f (x, y, z) >
1

KG
Ẽµ′′ f (x, y, z) =

1

KG
Ẽµ′′〈x, q〉 > Ω(1) · α .

Approximation factor. Our final algorithm consists of a binary search to get the largest value of

α > 0 that makes the SoS program above feasible. Then, some explicit multiple of α coming from

the analysis of our rounding provides a correct upper bound certificate on OPT.

We now check that this achieves approximation O(
√

n/k). Fix any triplet x∗, y∗, z∗ ∈ {±1}n

and let q∗i = ∑16j,k6n Tijky∗j z∗k for all i ∈ [n]. Suppose that (x∗, y∗, z∗) achieves the optimum of

the original problem, so that OPT = 〈x∗, q∗〉 = ‖q∗‖1. We set (y, z) = (y∗, z∗) and Mx = 〈x, q∗〉k

for all x ∈ supp(D), and we prove that this defines a feasible solution. By Hölder’s inequality,

Ex̂∼D〈x̂, q∗〉2k+2 > (Ex̂∼D〈x̂, q∗〉2k)
2k+2

2k , and Lemma 4.5 then yields

Ex̂∼DM2
x̂〈x̂, q∗〉2

Ex̂∼DM2
x̂

=
Ex̂∼D〈x̂, q∗〉2k+2

Ex̂∼D〈x̂, q∗〉2k
>
(

Ex̂∼D〈x̂, q∗〉2k
)1/k

> Ω(1) · k

n
· n−O( 1

k )OPT2 .

Assume without loss of generality that k = Ω(log n) (since otherwise, one can always increase k

to Θ(log n) without affecting the target runtime). Then, as long as α 6 O(1) ·
√

k
n ·OPT, Eq. (5) is

satisfied. This completes the proof.
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5 Optimization over the unit sphere

In this section, we prove the approximation results for cubic optimization over the unit sphere

matching our results over the hypercube:

• In Section 5.1, we show that the canonical degree-6k sum-of-squares relaxation has integral-

ity gap O(
√

n/k) by describing an appropriate rounding algorithm.

• In Section 5.2, we prove that a pruned SDP can achieve approximation O(
√

n/k) in time

2O(k)poly(n).

5.1 Analysis of the canonical degree-k SoS relaxation

We prove that the canonical degree-k SoS relaxation for optimizing over the unit sphere has inte-

grality gap at most O
(√

n
k

)
. The proof mirrors the hypercube case (Theorem 3.3), although the

analysis is much simpler here since we can directly relate the SoS value to the moments of the

Gaussian distribution.

Theorem 5.1. Fix 1 6 k 6 n. Given any decoupled homogeneous degree-3 polynomial f (x, y, z) =

∑16i,j,k6n Tijkxiyjzk, the canonical degree-6k SoS relaxation of maxx,y,z∈Sn−1 f (x, y, z) has integrality gap

O
(√

n
k

)
. Furthermore, given any degree-6k pseudo-distribution µ over

(
Sn−1

)3
such that SOS := Ẽµ f >

0, there is an nO(k)-time randomized rounding algorithm that outputs with high probability x, y, z ∈ Sn−1

such that f (x, y, z) > Ω
(√

k
n

)
· SOS.

Proof. Similarly to the proof of Theorem 3.1, we start by defining qi = qi(y, z) = y⊤Tiz and con-

sider

SOS
2k =

(
Ẽµ〈x, q〉

)2k
6 Ẽµ〈x, q〉2k 6 Ẽµ

[
‖x‖2k

2 · ‖q‖2k
2

]
= Ẽµ‖q‖2k

2 ,

using Cauchy-Schwarz and the pseudo-expectation version of Hölder’s inequality (Fact 2.4).

Then, let h ∼ N (0, In). We know from standard estimates on the moments of the Gaussian

distribution that for any vector v ∈ Rn, Eh〈h, v〉2k = ck‖v‖2k
2 , where ck = (2k − 1)!! > (k/2)k.

Thus, we have

SOS
2k 6 Ẽµ‖q‖2k

2 6

(
2

k

)k

· Eh∼N (0,In)Ẽµ〈q, h〉2k .

Since Ẽµ〈q, h〉2k is a degree-(2k) polynomial in h, by Lemma 2.8, h satisfies
(

Ẽµ〈q, h〉2k
) 1

2k
>

Ω(
√

k) · SOS with probability at least 2−O(k). Moreover, with probability at least 1 − 2−Ω(n) we

have ‖h‖2 6 O(
√

n).

Hence, our rounding algorithm goes as follows,

1. Sample h ∼ N (0, In) and let x = h
‖h‖2

.

2. Reweight the pseudo-distribution µ via Lemma 3.5 to obtain a degree-2 pseudo-distribution

µ′ such that
∣∣∣Ẽµ′〈q, h〉

∣∣∣ > 1
3

(
Ẽµ〈q, h〉2k

) 1
2k

.
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3. Use the lossless rounding for quadratic forms over the sphere (Lemma 2.6) on µ′ to obtain

solutions y, z ∈ Sn−1 such that y⊤(∑n
i=1 hiTi)z >

∣∣∣Ẽµ′〈q, h〉
∣∣∣ (we can flip the sign of h to get

the guarantee with the absolute value).

Putting everything together, it holds with probability at least 2−O(k) that

f (x, y, z) =
1

‖h‖2
y⊤
(

n

∑
i=1

hiTi

)
z >

1

‖h‖2

∣∣∣Ẽµ′〈q, h〉
∣∣∣ > Ω(1) ·

√
k

n
· SOS .

Repeating this poly(n, 2k) times, we obtain a rounding algorithm that satisfies the desired guar-

antees with high probablity.

5.2 Analysis of compressed SoS relaxations over the unit sphere

In this section, we prove the analogous statement of Theorem 4.1 over the sphere.

Theorem 5.2. Fix 1 6 k 6 n. There is a 2O(k)nO(1)-time certification algorithm that given a decoupled

homogeneous degree-3 polynomial f (x, y, z) = ∑16i,j,k6n Tijkxiyizk achieves O(
√

n/k)-approximation to

OPT := max
x,y,z∈Sn−1

f (x, y, z) .

Moreover, there is a corresponding rounding algorithm running in 2O(k)nO(1) time that outputs a solution

x, y, z ∈ Sn−1 with value f (x, y, z) > Ω
(√

k
n

)
·OPT.

Our proof relies on a hitting set construction analogous to Lemma 4.5.

Lemma 5.3. For any 1 6 k 6 n with k = Ω(log n), there exists a distribution D over Sn−1 supported on

at most 2O(k)nO(1) vectors such that for all w ∈ Rn,

(
Ex̂∼D〈x̂, w〉2k

) 1
2k
> Ω(1) ·

√
k

n
‖w‖2 .

Proof. Assume without loss of generality that k divides n. We define the distribution D over

x̂ ∈ Sn−1 as follows.

1. Sample b̂ ∈ {±1} n
k from a 4-wise independent distribution. Similarly to Claim 4.3, this can

be achieved by taking the uniform distribution over a subset of {±1} n
k of size nO(1).

2. Sample independently ĉ uniformly over an ε-net of Sk−1 of size O(1/ε)k for ε = 1
10 .

3. Output x̂ =
√

k
n · ĉ ⊗ b̂. Note in particular that x̂ is a unit vector.

Decompose w in k blocks w(1), . . . , w(k) of size n
k such that 〈x̂, w〉 =

√
k
n · ∑i ĉi〈b̂, w(i)〉. Claim 4.4

states that for each 1 6 i 6 n
k ,

Pr
b̂

[∣∣∣〈b̂, w(i)〉
∣∣∣ > 1

2
‖w(i)‖2

]
> Ω(1) .
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This implies that E
b̂ ∑

k
i=1〈b̂, w(i)〉2 > Ω(1) · ‖w‖2

2. On the other hand, for any b ∈ {±1} n
k , we can

find c = c(b) in the ε-net such that

k

∑
i=1

ci〈b, w(i)〉 > Ω(1) ·
(

k

∑
i=1

〈b, w(i)〉2

) 1
2

.

Therefore, there must exist x ∈ supp(D) such that 〈x, w〉 > Ω(1) ·
√

k
n · ‖w‖2, and this x is drawn

with probability at least 2−O(k)n−O(1). Finally, by Markov inequality,

Ex̂∼D〈x̂, w〉2k > Pr
x̂∼D

(
|〈x̂, w〉| > Ω(1) ·

√
k

n
· ‖w‖2

)
· Ω

(
k

n

)k

‖w‖2k
2

= 2−O(k)n−O(1)Ω

(
k

n

)k

‖w‖2k
2 .

This completes the proof assuming k = Ω(log n).

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. The proof is identical to the proof of Theorem 4.1, with the following excep-

tions:

• the boolean constraints y2
j = 1 and z2

k = 1 for all j, k ∈ [n] become spherical constraints:

‖y‖2
2 = 1 and ‖z‖2

2 = 1.

• instead of Grothendieck’s rounding we use the (lossless) rounding for quadratic forms over

the sphere from Lemma 2.6.

• if x∗, y∗, z∗ achieve the optimum for the cubic maximization problem, then OPT = ‖q∗‖2,

where q∗i = ∑16j,k6n Tijky∗j z∗k for all i ∈ [n].

• the last sequence of inequalities in the proof of Theorem 4.1 becomes as follows after using

Lemma 5.3 instead of Lemma 4.5:

ED
[
M2

x̂〈x̂, q∗〉2
]

ED
[
M2

x̂

] =
ED〈x̂, q∗〉2k+2

ED〈x̂, q∗〉2k
>
(

ED〈x̂, q∗〉2k
)1/k

> Ω(1) · k

n
· n−O( 1

k )OPT2 .

We conclude in the same way as in the proof of Theorem 4.1.

6 Rounding algorithm for 3SAT

In this section, we consider 3SAT formulas where each 3-tuple of variables appears at most once,

i.e. there are no two clauses with the same set of variables. Håstad and Venkatesh [HV04] used an

anti-concentration result of [AGK04] to prove that any 3SAT formula with m clauses has value at

least 7
8 + Ω( 1√

m
) (which is achieved by a random assignment with probability Ω( 1

m )).

We prove the following improvement over this result:

Theorem 6.1 (Restatement of Theorem 1.3). There is a polynomial-time randomized algorithm that,

given a satisfiable 3SAT formula with n variables, finds with high probability an assignment satisfying a

( 7
8 + Ω̃(n− 3

4 ))-fraction of the clauses.

20



Notations. A 3SAT clause C with variables x1, x2, x3 and negation pattern (σ1, σ2, σ3) ∈ {±1}3

can be written as

ψC(x1, x2, x3) =
7

8
− 1

8
(σ1x1 + σ2x2 + σ3x3 + σ1σ2x1x2 + σ2σ3x2x3 + σ1σ3x1x3 + σ1σ2σ3x1x2x3) .

Here we adopt the convention that −1 is True and +1 is False, and we can see that ψC(x) = 0 if

σ1x1 = σ2x2 = σ3x3 = +1, and ψC(x) = 1 otherwise. Thus, a 3SAT formula can be represented as

a function ψ : {±1}n → [0, 1],

ψ(x) =
7

8
+ f1(x) + f2(x) + f3(x) ,

where f1, f2, f3 are homogeneous polynomials of degree 1, 2 and 3 respectively.

Observe that maxx∈{±1}n | f1(x)|, maxx∈{±1}n | f2(x)| 6 3/8, and maxx∈{±1}n | f3(x)| 6 1/8. In

particular, this last statement implies the following crucial observation:

Observation 6.2. If x∗ is a satisfying assignment, then f1(x∗) + f2(x∗) > 0.

Before proceeding to describing the algorithm, we show the following version of degree-3 de-

coupling that augments the guarantees of Lemma 2.9 by controlling also the degree-1 and degree-2

parts:

Lemma 6.3 (Recoupling). Given x, y, z ∈ {±1}n, there exists a polynomial-time sampleable distribution

D over {±1}n such that

1. For any degree-3 homogeneous multilinear polynomial f (x) = ∑i,j,k∈[n] Tijkxixjxk (where T is a

symmetric 3-tensor) and the corresponding decoupled polynomial f̃ (x, y, z) = ∑i,j,k∈[n] Tijkxiyjzk,

Ex′∼D[ f (x′)] =
2

9
· f̃ (x, y, z) .

2. For any degree-2 homogeneous multilinear polynomial g(x) = ∑i,j∈[n] Mijxixj,

Ex′∼D[g(x′)] =
1

9
· (g(x) + g(y) + g(z)) .

3. Ex′∼D [x′] = 0.

Proof. The distribution D can be sampled as follows:

• Sample b1 and b2 independently and uniformly in ±1 and let b3 = b1b2. Then (b1, b2, b3) has

a pairwise independent distribution and b1b2b3 = 1.

• Independently for each i ∈ [n], sample x′i uniformly in the multiset {b1xi, b2yi, b3zi}.

Then, we have:

Ex′∼D
[

f (x′)
]
= ∑

16i,j,k6n

Tijk · E

[
b1xi + b2yi + b3zi

3
· b1xj + b2yj + b3zj

3
· b1xk + b2yk + b3zk

3

]

=
1

27 ∑
16i,j,k6n

Tijk · (xiyjzk + xizjyk + xjyizk + xjykzi + xkyjzi + xkyizj)

=
2

9
· f̃ (x, y, z) .
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Similarly, for degree-2 homogeneous multilinear polynomials,

Ex′∼D
[
g(x′)

]
= ∑

16i,j6n

Mij · E

[
b1xi + b2yi + b3zi

3
· b1xj + b2yj + b3zj

3

]
=

1

9
· (g(x) + g(y) + g(z)) .

The third part follows similarly.

The algorithm. We now describe the algorithm that achieves the guarantees of Theorem 6.1. We

define δ := c√
n log n

(for some small constant c > 0 to be picked at the end of Lemma 6.7).

Algorithm 1 (3SAT).

Input: A 3SAT instance in n variables: ψ(x) = 7
8 + f1(x) + f2(x) + f3(x) where f1, f2, f3 are

homogeneous polynomials of degree 1, 2 and 3 respectively.

Output: An assignment x ∈ {±1}n with value 7
8 + Ω̃(n− 3

4 ) with high probability.

Operation:

1. Solve for feasibility the following two degree-2 SoS programs over variables x =

(x1, . . . , xn):

(a) with axioms x2
i = 1 for all i ∈ [n], f1(x) + f2(x) > 0, and f1(x) > δ;

(b) with axioms x2
i = 1 for all i ∈ [n], f1(x) + f2(x) > 0, and f1(x) < −δ.

If none of these programs is feasible, move to the next case.

Otherwise, let µ be either a feasible degree-2 pseudo-distribution for (a), or the

negation of a feasible degree-2 pseudo-distribution for (b).

• Sample g ∼ N (Ẽµx, Ẽµ(x − Ẽµx)(x − Ẽµx)⊤).

• For all i ∈ [n], set xi =
gi

T if |gi| 6 T and xi = sign(gi) otherwise (for some

parameter T = T(n) > 0 to be chosen in Lemma 6.4).

• Sample x
(1)
i = 1 with probability

1+pxi

2 and x
(1)
i = −1 with probability

1−pxi

2 ,

independently for all i ∈ [n] (for some parameter p = p(n) > 0 to be chosen in

Lemma 6.4).

2. Get x′ by optimizing f2 using the second part of Theorem 2.7. Then, set x(2) = x′

or x(2) = −x′ depending on which of the two has higher value.

3. Let f̃3(x, y, z) be the decoupled polynomial of f3(x).

• Run the degree-6 SoS relaxation of cubic optimization of f̃3 in variables x, y, z ∈
{±1}n with the additional axioms f2(y) > −δ and f2(z) > −δ.

• Sample x ∼ {±1}n and reweight the pseudo-distribution µ as in the algorithm

of Theorem 3.1.

• Apply Charikar-Wirth rounding (Theorem 2.7) on the reweighted µ′ to get

y, z ∈ {±1}n.

• Finally, obtain x(3) by recoupling x, y, z via Lemma 6.3.
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4. Pick the best assignment among x(1), x(2), x(3).

5. Repeat the steps 1 to 4 poly(n) times and output the best assignment obtained.

The first three steps in the algorithm correspond to each of the degree-1, 2, or 3 part being large.

On a high level, our strategy is quite natural. If the degree-2 part is large, we use the classical

roundings for degree-2 polynomials. If the degree-3 part is large, then we use our rounding for

decoupled degree-3 polynomials from Section 3. In those two cases, we get an assignment with

value 7
8 + Ω̃(n− 1

2 ). If the degree-1 part is large, we introduce a different algorithm based on a

degree-2 SoS relaxation with additional axioms. Our rounding in this case is inspired by the proof

of Theorem 2.7 and uses an additional idea to make the degree-3 part negligible. In this last case,

we get an assignment with value 7
8 + Ω̃(n− 3

4 ).

We analyze separately these three cases now.

Lemma 6.4 (Large degree-1 part). Suppose that µ is a degree-2 pseudo-distribution such that:

∣∣∣Ẽµ [ f1(x)]
∣∣∣ > δ , Ẽµ [ f1(x) + f2(x)] > 0 .

Then x(1) has value 7
8 + Ω̃(n− 3

4 ).

Proof. First, up to negating the pseudo-distribution (which does not affect the degree-2 part), we

can assume without loss of generality that Ẽµ [ f1(x)] > δ.

The rounding proceeds in two steps. We introduce some parameters p = p(n) ∈ [0, 1] and

T = T(n) > 0 to be fixed later.

1. Sample a Gaussian with mean and covariance given by the degree-2 pseudo-distribution:

g ∼ N (Ẽµx, Ẽµ(x − Ẽµx)(x − Ẽµx)⊤). Then, let x ∈ [−1, 1]n be defined as follows: for each

i ∈ [n], let xi =
gi

T if |gi| 6 T and xi = sign(gi) otherwise.

2. Use x as a bias for sampling x(1): sample for each i ∈ [n] independently: x
(1)
i = 1 with

probability
1+pxi

2 and x
(1)
i = −1 with probability

1−pxi

2 .

We now analyze this rounding. Define

∆i := Exi −
1

T
Egi, ∆ij := E

[
xix j

]
− 1

T2
E
[
gigj

]
.

Then, at the end of the first step, we have (here, ‖ f1‖1 and ‖ f2‖1 denote the sum of the absolute

value of the coefficients of f1 and f2, respectively):

E [ f1(x)] >
1

T
Ẽ [ f1(x)]− ‖ f1‖1 · max

16i6n
|∆i| , (6)

E [ f2(x)] >
1

T2
Ẽ [ f2(x)]− ‖ f2‖1 · max

16i,j6n
|∆ij| . (7)

Claim 6.5. max16i6n |∆i| and max16i,j6n |∆ij| are both at most O(1) · e−
T2

8 .

Proof. Fix i ∈ [n]. First,

∆i =
1

T
E

[
gi(1|gi |6T − 1)

]
+ E

[
sign(gi)1|gi |>T

]
.
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Since µ is a degree-2 pseudo-distribution over the hypercube, gi is a Gaussian with mean Ẽµxi ∈
[−1, 1] and variance 1. Define pi := Pr(|gi| > T) 6 e−T2/4 (this holds provided T is a large enough

constant). By the triangle inequality and Cauchy-Schwarz, we have

|∆i| 6
1

T

∣∣∣E
[

gi1|gi |>T

]∣∣∣+ pi 6
1

T

√
2pi + pi 6 O(1) · e−

T2

8 .

Fix now i, j ∈ [n]. Similarly,

∆ij =
1

T2
E

[
gigj

(
1|gi |6T,|gj|6T − 1

)]
+

1

T
E

[
sign(gi)gj1|gi |>T,|gj|6T

]

+
1

T
E

[
gisign(gj)1|gi |6T,|gj|>T

]
+ E

[
sign(gi)sign(gj)1|gi |>T,|gj|>T

]
.

Note that (gi, gj) is a 2-dimensional Gaussian with marginal means bounded by 1 in absolute

value and |E[gi gj]| = |Ẽµ[xixj]| 6 1 by Fact 2.3. Hence, using once again the triangle inequality

and Cauchy-Schwarz,

|∆ij| 6
1

T2

∣∣∣E[gigj1|gi |>T or |gj |>T]
∣∣∣+ 1

T

(
E

[
|gj|1|gi |>T

]
+ E

[
|gi|1|gj |>T

])
+ pi

6
1

T2

√
E

[
g2

i g2
j

] (
pi + pj

)
+

√
2

T

(√
pi +

√
pj

)
+ pi

6 O(1) · e−
T2

8 .

Since f1 and f2 come from a 3SAT instance with m 6 n3 clauses, we have ‖ f1‖1, ‖ f2‖1 6 O(n3).

Thus, if we pick T =
√

48 log n, we get

E [ f1(x) + f2(x)] >
1√

48 log n
Ẽ [ f1(x)] +

1

48 log n
Ẽ [ f2(x)]− O

(
1

n2

)
> −O

(
1

n2

)
,

where we used our assumption Ẽµ [ f1(x) + f2(x)] > 0 (together with the fact that Ẽ [ f1(x)] > 0).

Next, at the end of second step, it holds that:

E

[
f1(x(1))

]
= pE [ f1(x)] , E

[
f2(x(1))

]
= p2

E [ f2(x)] , (8)

E

[
f3(x(1))

]
= p3

E [ f3(x)] > −p3 . (9)

Hence, by Eq. (8) and Eq. (6):

E

[
f1(x(1)) + f2(x(1))

]
> (p − p2)E [ f1(x)] + p2

E [ f1(x) + f2(x)]

> Ω(1) · δ(p − p2)√
log n

− O

(
p2

n2

)
−O

( p

n2

)
.

Setting p = n− 1
4

log n , we get

E

[
f1(x(1)) + f2(x(1))

]
> Ω(1) · n− 3

4

log2.5 n
,

and we conclude by combining with Eq. (9).
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Lemma 6.6 (Large degree-2 part). Suppose that max f2(x) > δ. Then x(2) has value 7
8 + Ω̃(n− 1

2 ).

Proof. Using Charikar-Wirth rounding (Theorem 2.7 with T = Θ(
√

log n)), we get that

f2(x′) > Ω

(
1

log n

)
max

x∈{±1}n
f2(x) .

Moreover, f2 is invariant by the choice of the signing ±x′, while f1 + f3 changes sign. Thus, x(2)

has value 7
8 + Ω̃(n− 1

2 ) (recall that δ = c√
n log n

).

Lemma 6.7 (Large degree-3 part). Suppose that maxx f2(x) 6 δ and | f1(x∗)| 6 δ for some assignment

x∗ satisfying the 3SAT formula. Then x(3) has value 7
8 + Ω̃(n− 1

2 ).

Proof. We run the canonical degree-6 SoS relaxation on the decoupled polynomial f̃3(x, y, z) asso-

ciated to f3 with variables x, y, z ∈ {±1}n, and the additional axioms f2(y) > −δ and f2(z) > −δ.

Let µ denote the resulting pseudo-distribution.

Since maxx f2(x) 6 δ, | f1(x∗)| 6 δ and δ = o(1), we must have f3(x∗) > 1
8 − o(1). Using

Observation 6.2, we get that the delta pseudo-distribution centered at x = y = z = x∗ is a feasible

solution to the SoS relaxation, so that µ satisfies

Ẽµ f̃3(x, y, z) >
1

8
− o(1), Ẽµ f2(y) > −δ, Ẽµ f2(z) > −δ .

Next, we sample x ∼ {±1}n and reweight µ using Lemma 3.2 to get a degree-2 pseudo-

distribution µ′. The same analysis shows that with at least constant probability, x satisfies

Ẽµ′ f̃3(x, y, z) > Ω

(
1√
n

)
. (10)

Furthermore, we claim that for C > 1,

Pr
x∼{±1}n

[ f2(x) > −Cδ] > 1 − 1

C
.

To see this, note that Ex f2(x) = 0 because f2 is multilinear. The above bound then follows from

the assumption maxx f2(x) 6 δ. Therefore, by a union bound, with at least constant probability

we get a good x that satisfies simultaneously Eq. (10) and f2(x) > −Cδ. By repeating the sampling

poly(n) times, we can find such an x ∈ {±1}n with high probability.

Now, fix x ∈ {±1}n satisfying the previous conditions. We apply Theorem 2.7 to the degree-2

pseudo-distribution µ′ over (y, z) ∈ {±1}2n for some T > 0 to be fixed later. Denoting by ‖ f2‖1

(resp. ‖ f3‖1) the sum of the absolute value of the coefficients of f2 (resp. f3), we have:

Ey [ f2(y)] >
1

T2
Ẽµ′ [ f2(y)]− 8e−

T2

2 ‖ f2‖1 ,

Ez [ f2(z)] >
1

T2
Ẽµ′ [ f2(z)]− 8e−

T2

2 ‖ f2‖1 ,

Ey,z

[
f̃3(x, y, z)

]
>

1

T2
Ẽµ′

[
f̃3(x, y, z)

]
− 8e−

T2

2 ‖ f3‖1 .
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The constraints f2(y) > −δ and f2(z) > −δ still hold for the reweighted pseudo-distribution µ′.
Moreover, ‖ f2‖1 and ‖ f3‖1 are both O(n3), so by picking T =

√
8 log n, we get

Ey [ f2(y)] > −O

(
δ

log n

)
− O

(
1

n

)
,

Ez [ f2(z)] > −O

(
δ

log n

)
− O

(
1

n

)
,

Ey,z

[
f̃3(x, y, z)

]
> Ω

(
1√

n log n

)
−O

(
1

n

)
.

Finally, once we have x, y, z, we recouple them to get x(3) by Lemma 6.3, obtaining

Ex(3) f3(x(3)) =
2

9
· f̃3(x, y, z) ,

Ex(3) f2(x(3)) =
1

9
· ( f2(x) + f2(y) + f2(z)) ,

Ex(3) f1(x(3)) = 0 .

Thus, we have

Eψ(x(3)) >
7

8
+ Ω

(
1√

n log n

)
− O(δ) =

7

8
+ Ω̃

(
1√
n

)
,

where the last equality holds provided that we pick the constant c > 0 in the definition of δ to be

small enough. This concludes the proof.

Proof of Theorem 6.1. It now suffices to prove that one of the assumptions of Lemma 6.4, Lemma 6.6

or Lemma 6.7 must hold. Fix some satisfying assignment x∗ to the 3SAT formula.

1. If | f1(x∗)| > δ, then one of the two SoS programs from Step 1 of Algorithm 1 is feasible, and

the assumptions of Lemma 6.4 hold.

2. If maxx f2(x) > δ, then the assumptions of Lemma 6.6 hold.

3. If | f1(x∗)| 6 δ and maxx f2(x) 6 δ, then the assumptions of Lemma 6.7 hold.

Hence, in all cases we get a random assignment x̃ ∈ {±1}n satisfying Eψ(x̃) > 7
8 + Ω̃(n− 3

4 ). By

repeating the rounding poly(n) times, we can get such an assignment with high probability.
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A A simple O(
√

n)-certifiable upper bound

In this section, we provide a simple alternative certification algorithm achieving the same ap-

proximation ratio as Theorem 3.1. Let f (x, y, z) = ∑16i,j,k6n Tijkxiyjzk where (Ti,j,k)16i,j,k6n is a

symmetric 3-tensor. We want to approximate

max
x,y,z∈{±1}n

f (x, y, z) . (11)

Let D be a pairwise independent distribution over {±1}n . We can use a construction in which

|supp(D)| = O(n). We will assume without loss of generality that if x̂ ∈ supp(D) then also

−x̂ ∈ supp(D).

We consider the following approximation algorithm: for each x̂ ∈ supp(D), find a constant

factor approximation of

max
y,z∈{±1}n

f (x̂, y, z) = max
y,z∈{±1}n

∑
16i,j,k6n

Ti,j,k x̂iyjzk , (12)

using (the proof of) Grothendieck’s inequality. Output the best solution over all choices of x̂ ∈
supp(D).

Call r the maximum of the Grothendieck relaxation of Eq. (12) over all x̂ ∈ supp(D). The

algorithm outputs a solution of value Ω(r). We want to prove that the standard degree-4 SoS

relaxation of Eq. (11) has optimum at most r · √n, which establishes an O(
√

n) integrality gap.

Let µ be the optimal pseudo-distribution for the degree-4 SoS relaxation of Eq. (11) and SOS be

its value. Let qi(y, z) = y⊤Tiz = ∑16j,k6n Ti,j,kyjzk, and write q = (q1, . . . , qn) such that f (x, y, z) =

〈x, q〉. We have that

SOS
2 =

(
Ẽµ〈x, q〉

)2
6 Ẽµ[〈x, q〉2] 6 n · Ẽµ‖q‖2

2

by Cauchy-Schwarz (Fact 2.3).

On the other hand, by definition of r and our assumption that supp(D) is symmetric, for every

x̂ ∈ supp(D) there is a degree-2 SoS proof (over variables y, z) that

f (x̂, y, z) 6 r and f (x̂, y, z) > −r .
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Hence, for every x̂ ∈ supp(D) there is a degree-4 SoS proof that

f (x̂, y, z)2 = 〈x̂, q〉2 6 r2 ,

which means that

r2 > ẼµEx̂∼D〈x̂, q〉2 = Ẽµ‖q‖2
2 >

1

n
· SOS2 ,

where we use the fact that the pairwise independence of D implies that Ex̂∼D〈x̂, v〉2 = ‖v‖2
2 for all

v ∈ Rn. Putting things together we get SOS2 6 n · r2, which completes the argument.

B Optimizing higher-degree polynomials

B.1 Decoupling inequalities

We first prove a decoupling lemma for all odd-degree polynomials.

Lemma B.1 (High-degree version of Lemma 2.9). Let d be an odd integer. Let f (x) = 〈T, x⊗d〉
be a multilinear homogeneous degree-d polynomial in n variables (where T is a symmetric d-tensor),

and let f̃ (x(1), . . . , x(d)) = 〈T, x(1) ⊗ · · · ⊗ x(d)〉 be the decoupled polynomial of f . Then, given any

x(1), . . . , x(d) ∈ {±1}n, there exists a sampleable distribution D over {±1}n such that

Ey∼D [ f (y)] =
d!

dd
· f̃
(

x(1), . . . , x(d)
)

.

As a consequence,

max
y∈{±1}n

f (y) >
d!

dd
· max

x(1),...,x(d)∈{±1}n
f̃
(

x(1), . . . , x(d)
)

.

Proof. The distribution D can be sampled as follows,

• Let b1, . . . , bd−1 be i.i.d. uniform ±1 random variables and let bd := b1 . . . bd−1. Note that the

distribution of b = (b1, . . . , bd) is (d − 1)-wise independent and b1b2 · · · bd = 1.

• Independently for each i ∈ [n], sample yi uniformly from {bjx
(j)
i }j∈[d].

Since each yi is sampled independently conditioned on b, we have that for any pairwise distinct

indices i1, . . . , id ∈ [n],

Ey∼D [yi1 · · · yid
] = Eb

[
d

∏
k=1

(
1

d

d

∑
j=1

bjx
(j)
ik

)]
= d−d ∑

j1 ,...,jd∈[d]
Eb

[
bj1 · · · bjd

]
· x

(j1)
i1

· · · x
(jd)
id

.

Since b follows a (d − 1)-wise independent distribution, b1b2 · · · bd = 1 and d is odd, Eb

[
bj1 · · · bjd

]

does not vanish (and equals 1) if and only if j1, . . . , jd are distinct, i.e., {j1, . . . , jd} = [d]. Thus, the

summation above is simply summing over permutations of [d]:

Ey∼D [yi1 · · · yid
] =

d!

dd
· Eπ∼Sd

[
x
(π(1))
i1

· · · x
(π(d))
id

]
=

d!

dd
· Eπ∼Sd

[
x
(1)
iπ(1)

· · · x
(d)
iπ(d)

]
,

where π ∼ Sd denotes a random permutation of [d]. Finally, as T is a symmetric tensor, we deduce

Ey∼D [ f (y)] =
d!

dd
· f̃
(

x(1), . . . , x(d)
)

.

This proves the first statement of the lemma. The second statement follows immediately.
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For even-degree polynomials, Lemma B.1 simply cannot hold. This is easy to appreciate by

discussing the simple setting of quadratics:

Example B.2 (Impossibility of decoupling for quadratics). Consider the matrix Q = I −~1~1⊤,

and define the multilinear quadratic polynomial f (x) = x⊤Qx and the decoupled polynomial

f̃ (x, y) = x⊤Qy. Then, it is easy to verify that maxx∈{±1}n f (x) = n but maxx,y∈{±1}n f̃ (x, y) =

n2 − n, which is a poly(n) gap.

On the other hand, if we only consider maxy | f (y)| like in the setting of [BGG+17] (as opposed

to maxy f (y)), then decoupling inequalities with the same guarantees as Lemma B.1 hold for any

degree:

Lemma B.3 (Decoupling for absolute values, any degree). Let d ∈ N. Let f (x) = 〈T, x⊗d〉 be a

multilinear homogeneous degree-d polynomial in n variables (where T is a symmetric d-tensor), and let

f̃ (x(1), . . . , x(d)) = 〈T, x(1) ⊗ · · · ⊗ x(d)〉 be the decoupled polynomial of f . Then,

max
y∈{±1}n

| f (y)| > d!

dd
· max

x(1),...,x(d)∈{±1}n
f̃
(

x(1), . . . , x(d)
)

.

Proof. We use the trick that maxy∼{±1}n | f (y)| = maxy∈[−1,1]n | f (y)|. Thus, given assignments

x(1), . . . , x(d) ∈ {±1}n, it suffices to round to a y ∈ [−1, 1]n .

We next state the well-known polarization identity for degree-d homogeneous polynomials:

f̃
(

x(1), . . . , x(d)
)
= Eε∼{±1}n

[ ε1ε2 · · · εd

d!
f
(

ε1x(1) + · · ·+ εdx(d)
)]

.

Define yε := 1
d (ε1x(1) + · · · εdx(d)) ∈ [−1, 1]n . Then, rewriting the above and using the triangle

inequality,

f̃
(

x(1), . . . , x(d)
)
=

dd

d!
· Eε∼{±1}n [ε1ε2 · · · εd · f (yε)] 6

dd

d!
· Eε∼{±1}n [| f (yε)|] .

Thus, there exists a yε ∈ [−1, 1]n such that | f (yε)| > d!
dd · f̃ (x(1), . . . , x(d)).

B.2 Rounding SoS relaxations for high-degree polynomials

We now give a simple polynomial-time certification and rounding algorithm using the canonical

sum-of-squares relaxation that achieves approximation O(n
d
2−1) for optimizing decoupled homo-

geneous degree-d polynomials over the hypercube. The proof is essentially identical to the cubic

case (Theorem 3.1).

Theorem B.4. Let d > 3 and n > 1 be integers. Given any decoupled homogeneous degree-d polynomial

f (x(1), . . . , x(d)) = 〈T, x(1) ⊗ · · · ⊗ x(d)〉, the degree-2d SoS relaxation of

max
x(1),...,x(d)∈{±1}n

f (x(1), . . . , x(d))

has integrality gap at most O(n
d
2−1). Furthermore, given a degree-2d pseudo-distribution µ such that

SOS := Ẽµ f > 0, there is a randomized nO(d)-time rounding algorithm that outputs x(1), . . . , x(d) ∈
{±1}n such that with high probability f (x(1), . . . , x(d)) > Ω(n− d

2+1) · SOS.
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Proof. For i3, . . . , id ∈ [n], we let qi3,...,id
(x(1), x(2)) := 〈Ti3,...,id

, x(1) ⊗ x(2)〉, a degree-2 polynomial

in x(1) and x(2), where Ti3,...,id
is an n × n matrix corresponding to a slice of the tensor T. For

simplicity of notation, we will drop the dependence on x(1) and x(2) and write Q := Q(x(1), x(2)) =

(qi3,...,id
)i3,...,id∈[n] as an order-(d − 2) tensor whose entries are degree-2 polynomials in x(1) and x(2).

Then, we have

SOS = ∑
i3,...,id∈[n]

Ẽµ

[
qi3 ,...,id

x
(3)
i3

· · · x
(d)
id

]

6 ∑
i3,...,id∈[n]

√
Ẽµ

[
q2

i3 ,...,id

]

6

√
nd−2 ∑

i3,...,id∈[n]
Ẽµ

[
q2

i3,...,id

]
= n

d
2−1
√

Ẽµ ‖Q‖2
F ,

using Cauchy-Schwarz and its pseudo-expectation version. Here, ‖Q‖2
F is the sum of the squared

coefficients of the tensor Q. However, taking h(3), . . . , h(d) to be i.i.d. uniform samples from {±1}n,

we have

Eh(3),...,h(d)〈Q, h(3) ⊗ · · · ⊗ h(d)〉2 = ‖Q‖2
F .

For simplicity, we denote H := h(3) ⊗ · · · ⊗ h(d). Then,

SOS
2 6 nd−2 · EH Ẽµ 〈Q, H〉2 ,

where we recall that the coefficients of Q are degree-2 polynomials in x(1) and x(2). We now

describe the rounding algorithm.

1. Sample h(3), . . . , h(d) ∼ {±1}n , and set x(j) := h(j) for j > 3. Denote H := h(3) ⊗ · · · ⊗ h(d).

2. Apply Lemma 3.2 to obtain from µ a degree-2 pseudo-distribution µ′ satisfying

∣∣∣Ẽµ′〈Q, H〉
∣∣∣ > 1

3

√
Ẽµ〈Q, H〉2 .

3. Use Grothendieck rounding (Fact 2.5) on µ′ to obtain solutions x(1), x(2) ∈ {±1}n such that

〈Q(x(1), x(2)), H〉 > 1
KG

·
∣∣∣Ẽµ′〈Q, H〉

∣∣∣ (we can always flip the sign of h(3) to get the guarantee

with the absolute value).

First, note that Ẽµ〈Q, H〉2 is a degree-2(d − 2) polynomial in h(3), . . . , h(d), thus by Lemma 2.8 and

hypercontractivity of polynomials over the hypercube, we know that

Pr
H

[
Ẽµ 〈Q, H〉2 > EH Ẽµ 〈Q, H〉2

]
> 2−O(d) .

Hence, with probability at least 2−O(d), we get a “good” H such that Ẽµ〈Q, H〉2 > n−(d−2) · SOS2.

Putting everything together, with probability at least 2−O(d) we obtain x(1), . . . , x(d) such that

f (x(1), . . . , x(d)) > Ω(n− d
2+1) · SOS. Repeating the above poly(n, 2d) times, we can obtain a so-

lution with value Ω(n− d
2+1) · SOS with high probability. This completes the proof.
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By combining Theorem B.4 with our decoupling inequalities Lemma B.1 and Lemma B.3, we

deduce that the same approximation guarantees hold in the general, non-decoupled case, for max-

imizing an odd-degree homogeneous polynomial, or maximizing the absolute value of an homo-

geneous polynomial of any degree. While we stated our results on the hypercube, the same holds

for maximizing over the unit sphere, using the Gaussian rounding from Theorem 5.1 instead of

Grothendieck’s inequality.
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