Up to the constant: discrepancy theory and iterative algorithms on random matrices

Chris Jones

Bocconi University

Lucas Pesenti

Bocconi University

Adrian Vladu

CNRS & IRIF Université Paris Cité

```
Discrepancy Theory (1/2)
```

Input: $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^d$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

Input: $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^d$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$ **Output:** a coloring $\mathbf{x} = (x_1, \ldots, x_n) \in \{-1, 1\}^n$ achieving small discrepancy:

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

Ex: set system S_1, \ldots, S_d over *n* elements

$$u_{i,j} = \begin{cases} 1 & \text{if } i \in S_j \\ 0 & \text{otherwise} \end{cases}$$

Goal: red/blue coloring with small maximal imbalance

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

Ex: *d* = 2

Input: $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^d$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$ Output: a coloring $\mathbf{x} = (x_1, \dots, x_n) \in \{-1, 1\}^n$ achieving small discrepancy:

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

Ex: *d* = 2

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

Ex: *d* = 2

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

There exists a coloring with discrepancy $\leqslant 2$

High-dimensional regime: d = n

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

High-dimensional regime: d = n

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\circ}$

1. Sample i.i.d.
$$x_1, \ldots, x_n \sim \{-1, 1\}$$

High-dimensional regime: d = n

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

- **1**. Sample i.i.d. $x_1, ..., x_n \sim \{-1, 1\}$
- **2**. Each coordinate of $\sum_i x_i \mathbf{u}_i$ is $\lesssim \mathcal{N}(\mathbf{0}, n)$

High-dimensional regime: d = n

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

- **1**. Sample i.i.d. $x_1, \ldots, x_n \sim \{-1, 1\}$
- **2**. Each coordinate of $\sum_i x_i \mathbf{u}_i$ is $\lesssim \mathcal{N}(\mathbf{0}, n)$
- 3. Union bound: w.h.p. they are all $O(\sqrt{n \log n})$

High-dimensional regime: d = n

Input: $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$ Output: a coloring $\mathbf{x} = (x_1, \ldots, x_n) \in \{-1, 1\}^n$ achieving small discrepancy:

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

- **1**. Sample i.i.d. $x_1, \ldots, x_n \sim \{-1, 1\}$
- **2**. Each coordinate of $\sum_i x_i \mathbf{u}_i$ is $\lesssim \mathcal{N}(\mathbf{0}, n)$
- 3. Union bound: w.h.p. they are all $O(\sqrt{n \log n})$

Thm: [Spencer'85] there always exist colorings of discrepancy $\leq 6\sqrt{n}$

High-dimensional regime: d = n

Input: $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$ Output: a coloring $\mathbf{x} = (x_1, \ldots, x_n) \in \{-1, 1\}^n$ achieving small discrepancy:

discrepancy(
$$\mathbf{x}$$
) := $\left\|\sum_{i=1}^{n} x_i \mathbf{u}_i\right\|_{\infty}$

- **1**. Sample i.i.d. $x_1, \ldots, x_n \sim \{-1, 1\}$
- **2**. Each coordinate of $\sum_i x_i \mathbf{u}_i$ is $\lesssim \mathcal{N}(\mathbf{0}, n)$
- 3. Union bound: w.h.p. they are all $O(\sqrt{n \log n})$

Thm: [Spencer'85] there always exist colorings of discrepancy $\leq 6\sqrt{n}$

Today: algorithmic proof of this theorem improving the 6

Why sparsification?

- fast algorithms
- Iow memory

- fast algorithms
- Iow memory

Reduction:

- 1. Solve the discrepancy problem to get x
- 2. $\sum_{i} (1 \pm x_i) \mathcal{O}_i \approx \sum_{i} \mathcal{O}_i$ and has support $\leq n/2$
- 3. Repeat!

Why sparsification?

- fast algorithms
- Iow memory

Reduction:

- 1. Solve the discrepancy problem to get x
- 2. $\sum_{i} (1 \pm x_i) \mathcal{O}_i \approx \sum_{i} \mathcal{O}_i$ and has support $\leq n/2$
- 3. Repeat!

Examples:

- [Reis–Rothvoss'20; Jambulapati–Reis–Tian'24] sparsify graphs
- [Reis–Rothvoss'22] sparsify convex combinations
- [Bozzai–Reis–Rothvoss'23] sparsify zonotopes

Discrepancy and Continuous Methods

Thm: [Spencer'85] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} = O(\sqrt{n})$

Discrepancy and Continuous Methods

Thm: [Spencer'85] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} = O(\sqrt{n})$

Already different known algorithmic proofs:

- [Bansal'10, Lovett–Meka'12] random walks, SDP
- [Eldan–Singh'14, Rothvoss'14] LP with random objective
- [Levy–Ramadas–Rothvoss'17] multiplicative weights update
- [Bansal–Laddha–Vempala'22] barrier potential function

Discrepancy and Continuous Methods

Thm: [Spencer'85] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} = O(\sqrt{n})$

Already different known algorithmic proofs:

- [Bansal'10, Lovett-Meka'12] random walks, SDP
- [Eldan–Singh'14, Rothvoss'14] LP with random objective
- [Levy–Ramadas–Rothvoss'17] multiplicative weights update
- [Bansal-Laddha-Vempala'22] barrier potential function

More and more inspired by continuous optimization

Today: Newton's method on a regularized objective

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|A_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $\mathbf{x}\mapsto\omega^*(\mathbf{A}\mathbf{x})$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|A_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $\mathbf{x} \mapsto \omega^*(\mathbf{A}\mathbf{x})$

Algorithm:

Start from $\mathbf{x} = (0, \dots, 0)$ While $\mathbf{x} \notin \{\pm 1\}^n$

$$F := \{i : x_i \notin \{-1, 1\}\}$$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|A_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $\mathbf{x} \mapsto \omega^*(\mathbf{A}\mathbf{x})$

Algorithm:

Start from $\mathbf{x} = (0, \dots, 0)$

While $\mathbf{x} \notin \{\pm 1\}^n$

$$F := \{i : x_i \notin \{-1, 1\}\}$$

Find δ s.t. supp $(\delta) \subseteq F, \delta \perp \mathbf{x}$ minimizing $\langle \mathbf{A}\delta, \nabla \omega^*(\mathbf{A}\mathbf{x}) \rangle + \frac{1}{2} \langle \mathbf{A}\delta, \nabla^2 \omega^*(\mathbf{A}\mathbf{x}) \mathbf{A}\delta \rangle$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|A_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $\mathbf{x} \mapsto \omega^*(\mathbf{A}\mathbf{x})$

Algorithm:

Start from $\mathbf{x} = (0, \dots, 0)$

While $\mathbf{x} \notin \{\pm 1\}^n$

$$F := \{i : x_i \notin \{-1, 1\}\}$$

Find δ s.t. supp $(\delta) \subseteq F, \delta \perp \mathbf{x}$ minimizing $\langle \mathbf{A}\delta, \nabla \omega^*(\mathbf{A}\mathbf{x}) \rangle + \frac{1}{2} \langle \mathbf{A}\delta, \nabla^2 \omega^*(\mathbf{A}\mathbf{x}) \mathbf{A}\delta \rangle$

x makes a small step in direction δ while staying in $[-1, 1]^n$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_\infty$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

1. Define a "smooth" proxy
$$\omega^*(\cdot)$$
 for $\|\cdot\|_{\infty}$

2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Up to tracking $\begin{bmatrix} +A & 0 \\ -A & 0 \end{bmatrix}$, assume WLOG

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \leqslant i \leqslant n} (\mathbf{A}\mathbf{x})_i = \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{A}\mathbf{x}, \mathbf{r} \rangle$$

where $\Delta_n := \{ \mathbf{r} \in \mathbb{R}^n : r_i \ge 0, \sum_i r_i = 1 \}.$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

1. Define a "smooth" proxy
$$\omega^*(\cdot)$$
 for $\|\cdot\|_{\infty}$

2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Up to tracking $\begin{bmatrix} +A & 0 \\ -A & 0 \end{bmatrix}$, assume WLOG

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} (\mathbf{A}\mathbf{x})_i = \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{A}\mathbf{x}, \mathbf{r} \rangle$$

where $\Delta_n := \{ \mathbf{r} \in \mathbb{R}^n : r_i \ge 0, \sum_i r_i = 1 \}.$

Def: Regularized maximum

$$\omega^*(\mathbf{z}) := \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{z}, \mathbf{r} \rangle + \sum_{i=1}^n r_i^{\frac{1}{2}}$$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}\mathbf{x}\|_{\infty} = O(\sqrt{n})$

1. Define a "smooth" proxy
$$\omega^*(\cdot)$$
 for $\|\cdot\|_{\infty}$

2. Run "sticky" Newton's Method on $x \mapsto \omega^*(Ax)$

Up to tracking $\begin{bmatrix} +A & 0 \\ -A & 0 \end{bmatrix}$, assume WLOG

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} (\mathbf{A}\mathbf{x})_i = \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{A}\mathbf{x}, \mathbf{r} \rangle$$

where $\Delta_n := \{ \mathbf{r} \in \mathbb{R}^n : r_i \ge 0, \sum_i r_i = 1 \}.$

Def: Regularized maximum

$$\omega^*(\mathbf{z}) \coloneqq \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{z}, \mathbf{r} \rangle + \sum_{i=1}^n \mathbf{r}_i^{\frac{1}{2}}$$

Claim: $\omega^*(\mathbf{z}) = \|\mathbf{z}\|_{\infty} \pm O(\sqrt{n})$

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Analysis:
Spencer's Theorem via Regularization (3/3)

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Analysis:

1. By bounding $\nabla^2 \omega^*(\mathbf{A}\mathbf{x})$, we prove that there always exists a direction $\delta \perp \mathbf{x}$, supp $(\delta) \subseteq F$ s.t.

$$\omega^*(\mathbf{A}(\mathbf{x}+\delta)) - \omega^*(\mathbf{A}\mathbf{x}) \leqslant \frac{\|\delta\|_2^2}{\sqrt{|F|}}.$$

Spencer's Theorem via Regularization (3/3)

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Analysis:

1. By bounding $\nabla^2 \omega^*(\mathbf{Ax})$, we prove that there always exists a direction $\delta \perp \mathbf{x}$, supp $(\delta) \subseteq F$ s.t.

$$\omega^*(\mathbf{A}(\mathbf{x}+\delta)) - \omega^*(\mathbf{A}\mathbf{x}) \leqslant \frac{\|\delta\|_2^2}{\sqrt{|F|}}$$

2. Hence we get charged $\frac{1}{\sqrt{|F|}}$ discrepancy "per unit of $\|\mathbf{x}\|_2^2$ "

Spencer's Theorem via Regularization (3/3)

Thm: [Spencer'85] For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ s.t. $|\mathbf{A}_{ij}| \leq 1$, there exists $\mathbf{x} \in \{\pm 1\}^n$ s.t. $\|\mathbf{A}x\|_{\infty} = O(\sqrt{n})$

- 1. Define a "smooth" proxy $\omega^*(\cdot)$ for $\|\cdot\|_{\infty}$
- 2. Run "sticky" Newton's Method on $x \mapsto \omega^*(\mathbf{A}x)$

Analysis:

1. By bounding $\nabla^2 \omega^*(\mathbf{Ax})$, we prove that there always exists a direction $\delta \perp \mathbf{x}$, supp $(\delta) \subseteq F$ s.t.

$$\omega^*(\mathbf{A}(\mathbf{x}+\delta)) - \omega^*(\mathbf{A}\mathbf{x}) \leqslant \frac{\|\delta\|_2^2}{\sqrt{|F|}}$$

- 2. Hence we get charged $\frac{1}{\sqrt{|F|}}$ discrepancy "per unit of $\|\mathbf{x}\|_2^2$ "
- Worst case: one coordinate of x get frozen every time ||x||²₂ increases by 1, total cost

$$1 imes rac{1}{\sqrt{n}} + 1 imes rac{1}{\sqrt{n-1}} + \ldots = O(\sqrt{n})$$
.

Thm: [P.-Vladu'23] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} \leq 3.8\sqrt{n}$

Open question 1: What is the best possible constant?

Thm: [P.-Vladu'23] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} \leq 3.8\sqrt{n}$

Open question 1: What is the best possible constant? **Open question 2:** What are other regularizers for this problem?

Thm: [P.-Vladu'23] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} \leq 3.8\sqrt{n}$

Open question 1: What is the best possible constant? **Open question 2:** What are other regularizers for this problem?

$$\omega^*(\mathbf{z}) := \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{z}, \mathbf{r} \rangle + \sum_{i=1}^n r_i^{\frac{1}{2}} = \min_{\lambda \ge \max z_i} \lambda + \sum_{i=1}^n \frac{1}{\lambda - z_i}$$

[Audibert-Bubeck'09; Allen-Zhu-Liao-Orecchia'15]

Thm: [P.-Vladu'23] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} \leq 3.8\sqrt{n}$

Open question 1: What is the best possible constant? **Open question 2:** What are other regularizers for this problem?

$$\omega^*(\mathbf{z}) := \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{z}, \mathbf{r} \rangle + \sum_{i=1}^n r_i^{\frac{1}{2}} = \min_{\lambda \geqslant \max z_i} \lambda + \sum_{i=1}^n \frac{1}{\lambda - z_i}$$

[Audibert-Bubeck'09; Allen-Zhu-Liao-Orecchia'15]

Ex: What about

$$\operatorname{smax}(\mathbf{z}) := \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{z}, \mathbf{r} \rangle - \sum_{i=1}^n r_i \log r_i = \log \left(\sum_{i=1} e^{\mathbf{z}_i} \right)?$$

Thm: [P.-Vladu'23] For any $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ s.t. $\|\mathbf{u}_i\|_{\infty} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{u}_i\|_{\infty} \leq 3.8\sqrt{n}$

Open question 1: What is the best possible constant? **Open question 2:** What are other regularizers for this problem?

$$\omega^*(\mathbf{z}) := \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{z}, \mathbf{r} \rangle + \sum_{i=1}^n r_i^{\frac{1}{2}} = \min_{\lambda \geqslant \max z_i} \lambda + \sum_{i=1}^n \frac{1}{\lambda - z_i}$$

[Audibert-Bubeck'09; Allen-Zhu-Liao-Orecchia'15]

Ex: What about

$$\operatorname{smax}(\mathbf{z}) := \max_{\mathbf{r} \in \Delta_n} \langle \mathbf{z}, \mathbf{r} \rangle - \sum_{i=1}^n r_i \log r_i = \log \left(\sum_{i=1}^{n} e^{z_i} \right)?$$

Regularized Newton's method with smax \approx multiplicative weights update \approx derandomizing the coin flipping argument

Conjecture: For any symmetric $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ s.t. $\|\mathbf{A}_i\|_{op} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{A}_i\|_{op} = O(\sqrt{n})$

Conjecture: For any symmetric $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ s.t. $\|\mathbf{A}_i\|_{op} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{A}_i\|_{op} = O(\sqrt{n})$

Random coloring:
$$\sqrt{\log n} \cdot \left\|\sum_{i} \mathbf{A}_{i}^{2}\right\|_{op}^{\frac{1}{2}} \leq \sqrt{n \log n}$$

Conjecture: For any symmetric $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ s.t. $\|\mathbf{A}_i\|_{op} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{A}_i\|_{op} = O(\sqrt{n})$

Random coloring:
$$\sqrt{\log n} \cdot \left\| \sum_i \mathbf{A}_i^2 \right\|_{op}^{\frac{1}{2}} \leq \sqrt{n \log n}$$

Thm: [Hopkins–Raghavendra–Shetty'22] conjecture holds if rank(\mathbf{A}_i) $\ll \sqrt{n}$

Conjecture: For any symmetric $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ s.t. $\|\mathbf{A}_i\|_{op} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{A}_i\|_{op} = O(\sqrt{n})$

Random coloring:
$$\sqrt{\log n} \cdot \left\|\sum_{i} \mathbf{A}_{i}^{2}\right\|_{\text{op}}^{\frac{1}{2}} \leq \sqrt{n \log n}$$

Thm: [Hopkins–Raghavendra–Shetty'22] conjecture holds if rank(A_i) $\ll \sqrt{n}$

Conjecture: For any symmetric $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ s.t. $\|\mathbf{A}_i\|_{op} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{A}_i\|_{op} = O(\sqrt{n})$

Random coloring:
$$\sqrt{\log n} \cdot \left\|\sum_{i} \mathbf{A}_{i}^{2}\right\|_{\text{op}}^{\frac{1}{2}} \leq \sqrt{n \log n}$$

Thm: [Hopkins–Raghavendra–Shetty'22] conjecture holds if rank(A_i) $\ll \sqrt{n}$

Conjecture: For any symmetric $A_1, \ldots, A_n \in \mathbb{R}^{n \times n}$ s.t. $||A_i||_{op} \leq 1$, there exists $x_1, ..., x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{A}_i\|_{op} = O(\sqrt{n})$

Random coloring:
$$\sqrt{\log n} \cdot \left\|\sum_{i} \mathbf{A}_{i}^{2}\right\|_{\text{op}}^{\frac{1}{2}} \leq \sqrt{n \log n}$$

Thm: [Hopkins–Raghavendra–Shetty'22] conjecture holds if rank(A_i) $\ll \sqrt{n}$

to

Conjecture: For any symmetric $\mathbf{A}_1, \ldots, \mathbf{A}_n \in \mathbb{R}^{n \times n}$ s.t. $\|\mathbf{A}_i\|_{op} \leq 1$, there exists $x_1, \ldots, x_n \in \{-1, 1\}$ s.t. $\|\sum_i x_i \mathbf{A}_i\|_{op} = O(\sqrt{n})$

Random coloring:
$$\sqrt{\log n} \cdot \left\|\sum_{i} \mathbf{A}_{i}^{2}\right\|_{\text{op}}^{\frac{1}{2}} \leqslant \sqrt{n \log n}$$

Thm: [Hopkins–Raghavendra–Shetty'22] conjecture holds if rank(\mathbf{A}_i) $\ll \sqrt{n}$

Open question 3: same if $rank(A_i) \ll n$? [Bansal–Jiang–Meka'23]

Problem: solve for x in

$$\max_{\mathbf{x}\in\{-1,1\}^n}\frac{1}{n}\langle\mathbf{x},\mathbf{A}\mathbf{x}\rangle$$

where **A** is a random symmetric matrix with i.i.d. $\pm 1/\sqrt{n}$ entries

,

Problem: solve for x in

$$\max_{\mathbf{x}\in\{-1,1\}^n}\frac{1}{n}\langle \mathbf{x},\mathbf{A}\mathbf{x}\rangle\approx P_* \text{ for some } P_*\approx\dots$$

where **A** is a random symmetric matrix with i.i.d. $\pm 1/\sqrt{n}$ entries

Problem: solve for x in

$$\max_{\mathbf{x}\in\{-1,1\}^n}\frac{1}{n}\langle \mathbf{x},\mathbf{A}\mathbf{x}\rangle\approx P_* \text{ for some } P_*\approx \dots$$

where **A** is a random symmetric matrix with i.i.d. $\pm 1/\sqrt{n}$ entries

[Montanari'19; El Alaoui–Montanari–Sellke'21] algorithm achieving $P_* - \varepsilon$ whp

Problem: solve for x in

$$\max_{\mathbf{x}\in\{-1,1\}^n}\frac{1}{n}\langle \mathbf{x},\mathbf{A}\mathbf{x}\rangle\approx P_* \text{ for some } P_*\approx \dots$$

where **A** is a random symmetric matrix with i.i.d. $\pm 1/\sqrt{n}$ entries

[Montanari'19; El Alaoui–Montanari–Sellke'21] algorithm achieving $P_* - \varepsilon$ whp

Problem: solve for x in

$$\max_{\mathbf{x}\in\{-1,1\}^n}\frac{1}{n}\langle \mathbf{x},\mathbf{A}\mathbf{x}\rangle\approx P_* \text{ for some } P_*\approx \dots$$

where **A** is a random symmetric matrix with i.i.d. $\pm 1/\sqrt{n}$ entries

[Montanari'19; El Alaoui–Montanari–Sellke'21] algorithm achieving $P_* - \varepsilon$ whp

Optimal schedule: given i.i.d. $g_t \sim \mathcal{N}(0, 1)$, $\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \ge P_* - \varepsilon$ $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1] \text{ a.s.}$

Problem: solve for x in

$$\max_{\mathbf{x}\in\{-1,1\}^n}\frac{1}{n}\langle \mathbf{x},\mathbf{A}\mathbf{x}\rangle\approx P_* \text{ for some } P_*\approx \dots$$

where **A** is a random symmetric matrix with i.i.d. $\pm 1/\sqrt{n}$ entries

[Montanari'19; El Alaoui–Montanari–Sellke'21] algorithm achieving $P_* - \varepsilon$ whp

Optimal schedule: given i.i.d. $g_t \sim \mathcal{N}(0, 1)$, $\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \ge P_* - \varepsilon$ $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1] \text{ a.s.}$

Question: How to pick the g_t 's?

Perspective: "symmetrized" Fourier analysis

Facts: if **A** is symmetric with i.i.d. $\pm 1/\sqrt{n}$ entries,

1. The diagrams are orthogonal w.r.t. \mathbb{E}_A .

Facts: if **A** is symmetric with i.i.d. $\pm 1/\sqrt{n}$ entries,

- 1. The diagrams are orthogonal w.r.t. \mathbb{E}_A .
- 2. As $n \to \infty$, the only non-negligible diagrams are the trees.

Facts: if **A** is symmetric with i.i.d. $\pm 1/\sqrt{n}$ entries,

- 1. The diagrams are orthogonal w.r.t. \mathbb{E}_A .
- 2. As $n \to \infty$, the only non-negligible diagrams are the trees.
- 3. As $n \to \infty$, the trees where the root has degree 1 are independent Gaussian vectors.

Asymptotic diagrams cheatsheet (1/2)

Rule 1: multiply diagrams coordinatewise

Asymptotic diagrams cheatsheet (1/2)

Asymptotic diagram basis { Z^{α} : α rooted tree}

Rule 1: multiply diagrams coordinatewise

 $\text{if } \{\alpha,\beta\} \cap \{\gamma,\delta\} = \emptyset:$

Asymptotic diagrams cheatsheet (1/2)

Asymptotic diagram basis { Z^{α} : α rooted tree}

Asymptotic diagrams cheatsheet (2/2)

Asymptotic diagram basis { Z^{α} : α rooted tree}

Rule 2: multiply by A

Asymptotic diagrams cheatsheet (2/2)

Asymptotic diagram basis { Z^{α} : α rooted tree}

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leqslant T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t\leqslant T} 2\mathbb{E}[u_t(g_0,\ldots,g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t\leqslant T} u_t(g_0,\ldots,g_{t-1})g_t \in [-1,1]$ a.s

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leq T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1] \text{ a.s.}$

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Pick \mathbf{g}_t among depth-t Gaussian diagrams!

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leq T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1]$ a.s.

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Pick \mathbf{g}_t among depth-t Gaussian diagrams!

• Rule 1: $u_t(\mathbf{g}_0, \dots, \mathbf{g}_{t-1})$ has full mass on diagrams of depth $\leq t - 1$.

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leq T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1]$ a.s.

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Pick \mathbf{g}_t among depth-t Gaussian diagrams!

▶ Rule 1: $u_t(\mathbf{g}_0, ..., \mathbf{g}_{t-1})$ has full mass on diagrams of depth $\leq t - 1$.

• Rule 1: $\mathbf{u}_t \odot \mathbf{g}_t$ has full mass on depth-t diagrams.

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leq T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1]$ a.s.

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Pick \mathbf{g}_t among depth-t Gaussian diagrams!

- ▶ Rule 1: $u_t(\mathbf{g}_0, ..., \mathbf{g}_{t-1})$ has full mass on diagrams of depth $\leq t 1$.
- Rule 1: $\mathbf{u}_t \odot \mathbf{g}_t$ has full mass on depth-t diagrams.
- ▶ *Rule* 2: $\mathbf{A}(\mathbf{u}_t \odot \mathbf{g}_t)$ has full mass on Gaussian diagrams of depth t + 1 and diagrams of depth t 1. Define \mathbf{g}_{t+1} to be the depth-(t + 1) part.
Back to optimizing random quadratic forms

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leq T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1]$ a.s.

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Pick \mathbf{g}_t among depth-t Gaussian diagrams!

- Rule 1: $u_t(\mathbf{g}_0, \ldots, \mathbf{g}_{t-1})$ has full mass on diagrams of depth $\leq t 1$.
- Rule 1: $\mathbf{u}_t \odot \mathbf{g}_t$ has full mass on depth-t diagrams.
- *Rule 2*: A(u_t ⊙ g_t) has full mass on Gaussian diagrams of depth t + 1 and diagrams of depth t − 1. Define g_{t+1} to be the depth-(t + 1) part.

If
$$\mathbf{x} = \sum_{t \leqslant T} \mathbf{u}_t \odot \mathbf{g}_t$$
,
 $\mathbb{E} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle = \sum_{s,t \leqslant T} \mathbb{E} \langle \mathbf{u}_s \odot \mathbf{g}_s, \mathbf{A} \mathbf{u}_t \odot \mathbf{g}_t$

Back to optimizing random quadratic forms

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leq T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1]$ a.s.

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Pick \mathbf{g}_t among depth-t Gaussian diagrams!

- Rule 1: $u_t(\mathbf{g}_0, \ldots, \mathbf{g}_{t-1})$ has full mass on diagrams of depth $\leq t 1$.
- Rule 1: $\mathbf{u}_t \odot \mathbf{g}_t$ has full mass on depth-t diagrams.
- *Rule 2*: A(u_t ⊙ g_t) has full mass on Gaussian diagrams of depth t + 1 and diagrams of depth t − 1. Define g_{t+1} to be the depth-(t + 1) part.

If
$$\mathbf{x} = \sum_{t \leqslant T} \mathbf{u}_t \odot \mathbf{g}_t$$
,
 $\mathbb{E} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle = \sum_{s,t \leqslant T} \mathbb{E} \langle \mathbf{u}_s \odot \mathbf{g}_s, \mathbf{A} \mathbf{u}_t \odot \mathbf{g}_t \rangle = 2 \sum_{t \leqslant T} \mathbb{E} \langle \mathbf{u}_t \odot \mathbf{g}_t, \mathbf{g}_t \rangle$

Back to optimizing random quadratic forms

Input: optimal schedule $\{u_t : \mathbb{R}^t \to \mathbb{R}\}_{t \leq T}$ s.t. given i.i.d. $g_t \sim \mathcal{N}(0, 1)$,

$$\sum_{t \leq T} 2\mathbb{E}[u_t(g_0, \dots, g_{t-1})] \geqslant P_* - \varepsilon$$

 $\sum_{t \leq T} u_t(g_0, \dots, g_{t-1})g_t \in [-1, 1]$ a.s.

Output: $\mathbf{x} \in [-1, 1]^n$ s.t. $\frac{1}{n} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge P_* - \varepsilon$.

Pick \mathbf{g}_t among depth-t Gaussian diagrams!

- Rule 1: $u_t(\mathbf{g}_0, \ldots, \mathbf{g}_{t-1})$ has full mass on diagrams of depth $\leq t 1$.
- **•** Rule 1: $\mathbf{u}_t \odot \mathbf{g}_t$ has full mass on depth-*t* diagrams.
- *Rule 2*: A(u_t ⊙ g_t) has full mass on Gaussian diagrams of depth t + 1 and diagrams of depth t − 1. Define g_{t+1} to be the depth-(t + 1) part.

If
$$\mathbf{x} = \sum_{t \leq T} \mathbf{u}_t \odot \mathbf{g}_t$$
,
 $\mathbb{E} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle = \sum_{s,t \leq T} \mathbb{E} \langle \mathbf{u}_s \odot \mathbf{g}_s, \mathbf{A} \mathbf{u}_t \odot \mathbf{g}_t \rangle = 2 \sum_{t \leq T} \mathbb{E} \langle \mathbf{u}_t \odot \mathbf{g}_t, \mathbf{g}_t \rangle = n \sum_{t \leq T} 2\mathbb{E}[u_t]$.

Upcoming challenges

Applies to generalized first order methods [Montanari-Celentano-Wu'20]

Ex: approximate message passing, power iteration, ...

Upcoming challenges

Applies to generalized first order methods [Montanari-Celentano-Wu'20]

Ex: approximate message passing, power iteration, ...

Theorem 3.35 (State evolution for GFOM). Assume Assumption 3.1 on A and Assumption 3.34 on f_0, f_1, \ldots, f_t . Generate $x_t, y_t \in \mathbb{R}^n$ using the GFOM

$$x_0 = \vec{1}$$
 $y_t = Ax_t$ $x_{t+1} = f_t(y_t, \dots, y_0)$.

Let $X_t, Y_t \in \Omega$ be the result of running the GFOM operations asymptotically using the rules in Section 2.3. Then for all polynomial functions $\psi : \mathbb{R}^{2(t+1)} \to \mathbb{R}$,

$$\frac{1}{n}\sum_{i=1}^{n}\psi(x_{t,i}, y_{t,i}, \dots, x_{0,i}, y_{0,i}) \xrightarrow{a.s.} \mathbb{E}[\psi(X_t, Y_t, \dots, X_0, Y_0)].$$

Furthermore, X_t, Y_t are universal (they do not depend on the distributions μ or μ_0 in Assumption 3.1).

Upcoming challenges

Applies to generalized first order methods [Montanari-Celentano-Wu'20]

Ex: approximate message passing, power iteration, ...

Theorem 3.35 (State evolution for GFOM). Assume Assumption 3.1 on A and Assumption 3.34 on f_0, f_1, \ldots, f_t . Generate $x_t, y_t \in \mathbb{R}^n$ using the GFOM

$$x_0 = \vec{1}$$
 $y_t = Ax_t$ $x_{t+1} = f_t(y_t, \dots, y_0)$.

Let $X_t, Y_t \in \Omega$ be the result of running the GFOM operations asymptotically using the rules in Section 2.3. Then for all polynomial functions $\psi : \mathbb{R}^{2(t+1)} \to \mathbb{R}$,

$$\frac{1}{n}\sum_{i=1}^{n}\psi(x_{t,i}, y_{t,i}, \dots, x_{0,i}, y_{0,i}) \xrightarrow{a.s.} \mathbb{E}[\psi(X_t, Y_t, \dots, X_0, Y_0)].$$

Furthermore, X_t, Y_t are universal (they do not depend on the distributions μ or μ_0 in Assumption 3.1).

Open question 4: how about $\Omega(\log n)$ iterations?

Conclusion

Summary:

- Discrepancy problems and their applications to sparsification
- Newton's method on a regularized objective for Spencer's theorem
- Combining regularizers for the low-rank matrix Spencer conjecture
- Optimizing a random quadratic form and the "optimal schedules" from Parisi formula
- Diagram analysis of iterative algorithms on random matrices

Conclusion

Summary:

- Discrepancy problems and their applications to sparsification
- Newton's method on a regularized objective for Spencer's theorem
- Combining regularizers for the low-rank matrix Spencer conjecture
- Optimizing a random quadratic form and the "optimal schedules" from Parisi formula
- Diagram analysis of iterative algorithms on random matrices

Open question 1: tight constant in Spencer's theorem?

Open question 2: other useful regularizers?

Open question 3: matrix Spencer up to polylog rank using regularized Newton's method?

Open question 4: diagram analysis of iterative algorithms for $\Omega(\log n)$ iterations?