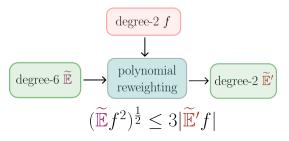
New SDP Roundings and Certifiable Approximation for Cubic Optimization



CMU

CMU

Bocconi University

Luca Trevisan

Bocconi University

イロト イボト イヨト イヨト 二日

Quadratic polynomial optimization

Question: Given an arbitrary homogeneous degree-2 multilinear polynomial

$$p(\mathbf{x}) := p(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} A_{ij} x_i x_j$$

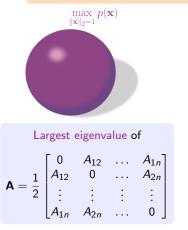
can we approximate efficiently $\max p(\mathbf{x})$?

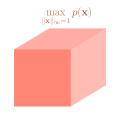
Quadratic polynomial optimization

Question: Given an arbitrary homogeneous degree-2 multilinear polynomial

$$p(\mathbf{x}) := p(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} A_{ij} x_i x_j$$

can we approximate efficiently $\max p(\mathbf{x})$?





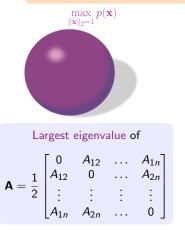
2/9

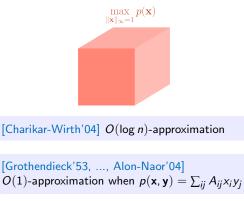
Quadratic polynomial optimization

Question: Given an arbitrary homogeneous degree-2 multilinear polynomial

$$p(\mathbf{x}) := p(x_1, \ldots, x_n) = \sum_{1 \leq i < j \leq n} A_{ij} x_i x_j$$

can we approximate efficiently $\max p(\mathbf{x})$?





Based on rounding the basic SDP relaxation

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$p(\mathbf{x}) \coloneqq p(x_1, \dots, x_n) = \sum_{1 \leq i < j < k \leq n} A_{ijk} x_i x_j x_k \, ,$$

can we approximate efficiently $\max p(\mathbf{x})$?

Ex: "multiplicative" approximation of Max-3XOR

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$p(\mathbf{x}) := p(x_1, \ldots, x_n) = \sum_{1 \leq i < j < k \leq n} A_{ijk} x_i x_j x_k ,$$

can we approximate efficiently $\max p(\mathbf{x})$?

Ex: "multiplicative" approximation of Max-3XOR

Over both S^{n-1} and $\{-1,1\}^n$:

Thm 1: [HKPT'24] $O(\sqrt{n})$ -approximation in time $n^{O(1)}$ via a "canonical" SDP relaxation

Thm 2: [HKPT'24] $O(\sqrt{n/\log n})$ -approximation in time $n^{O(1)}$ via a "pruned" SDP relaxation

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$p(\mathbf{x}) := p(x_1, \ldots, x_n) = \sum_{1 \leq i < j < k \leq n} A_{ijk} x_i x_j x_k ,$$

can we approximate efficiently $\max p(\mathbf{x})$?

Ex: "multiplicative" approximation of Max-3XOR

Over both S^{n-1} and $\{-1, 1\}^n$:

Thm 1: [HKPT'24] $O(\sqrt{n/k})$ -approximation in time $n^{O(k)}$ via a "canonical" SDP relaxation

Thm 2: [HKPT'24] $O(\sqrt{n/k})$ -approximation in time $2^{O(k)}n^{O(1)}$ via a "pruned" SDP relaxation

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$p(\mathbf{x}) := p(x_1, \ldots, x_n) = \sum_{1 \leq i < j < k \leq n} A_{ijk} x_i x_j x_k ,$$

can we approximate efficiently $\max p(\mathbf{x})$?

Ex: "multiplicative" approximation of Max-3XOR

Over both S^{n-1} and $\{-1, 1\}^n$:

Thm 1: [HKPT'24] $O(\sqrt{n/k})$ -approximation in time $n^{O(k)}$ via a "canonical" SDP relaxation

 \rightarrow generalizes [Bhattiprolu-Gosh-Guruswami-Lee-Tulsiani'17]

Thm 2: [HKPT'24] $O(\sqrt{n/k})$ -approximation in time $2^{O(k)}n^{O(1)}$ via a "pruned" SDP relaxation

- \rightarrow matches [Khot-Naor'07] for $\mathbf{k} = \log n$
- \rightarrow also provides a *certifiable upper bound* on max $p(\mathbf{x})$ (the SDP dual)

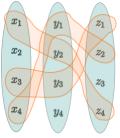
Decoupling interlude

Why cubic optimization?

[Khot-Naor'07] Let $\mathbf{A} = (A_{ijk})$ be a symmetric 3-tensor with zero "diagonal",

$$p(\mathbf{x}) \coloneqq \sum_{ijk} A_{ijk} x_i x_j x_k ,$$

 $\tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \coloneqq \sum_{ijk} A_{ijk} x_i y_j z_k .$



Decoupled polynomial

Decoupling interlude

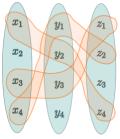
Why cubic optimization?

[Khot-Naor'07] Let $\mathbf{A} = (A_{ijk})$ be a symmetric 3-tensor with zero "diagonal",

$$p(\mathbf{x}) := \sum_{ijk} A_{ijk} x_i x_j x_k$$
,
 $\tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \sum_{ijk} A_{ijk} x_i y_j z_k$.

Then

$$\max_{\mathbf{x}\in\{-1,1\}^n} p(\mathbf{x}) \asymp \max_{\mathbf{x},\mathbf{y},\mathbf{z}\in\{-1,1\}^n} \tilde{p}(\mathbf{x},\mathbf{y},\mathbf{z}) \, .$$



Decoupled polynomial

Decoupling interlude

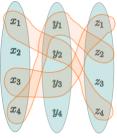
Why cubic optimization?

[Khot-Naor'07] Let $\mathbf{A} = (A_{ijk})$ be a symmetric 3-tensor with zero "diagonal",

$$p(\mathbf{x}) := \sum_{ijk} A_{ijk} x_i x_j x_k$$
,
 $\tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) := \sum_{ijk} A_{ijk} x_i y_j z_k$.

Then

$$\max_{\mathbf{x}\in\{-1,1\}^n} p(\mathbf{x}) \asymp \max_{\mathbf{x},\mathbf{y},\mathbf{z}\in\{-1,1\}^n} \tilde{p}(\mathbf{x},\mathbf{y},\mathbf{z}) \, .$$



Decoupled polynomial

Only holds for odd-degree (multilinear) polynomials

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{ijk} A_{ijk} x_i y_j z_k$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$ -approximation to $\max_{\mathbf{x}, \mathbf{y}, \mathbf{z} \in \{-1, 1\}^n} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{ijk} A_{ijk} x_i y_j z_k$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$ -approximation to $\max_{\mathbf{x},\mathbf{y},\mathbf{z}\in\{-1,1\}^n} p(\mathbf{x},\mathbf{y},\mathbf{z})$.

・ロト ・ 日 ト ・ 日 ト ・ 日

5/9

The SDP relaxation:

 $\max_{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}\left[\textbf{\textit{p}}(\mathbf{x},\mathbf{y},\mathbf{z}) \right]$

over all degree-6 pseudo-expectations $\widetilde{\mathbb{E}}$. (Solvable in polynomial time)

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{ijk} A_{ijk} x_i y_j z_k$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$ -approximation to $\max_{\mathbf{x}, \mathbf{y}, \mathbf{z} \in \{-1,1\}^n} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

The SDP relaxation:

 $\max_{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}\left[\boldsymbol{p}(\mathbf{x},\mathbf{y},\mathbf{z}) \right]$

over all degree-6 pseudo-expectations $\widetilde{\mathbb{E}}$. (Solvable in polynomial time) Def: A degree-6 $\textit{pseudo-expectation}\ \widetilde{\mathbb{E}}$ is a linear map

 $\widetilde{\mathbb{E}}: \{ \mathsf{polynomials} \text{ of degree} \leqslant \mathsf{6} \text{ in } x, y, z \}
ightarrow \mathbb{R}$

satisfying "consistency checks" for the degree $\leqslant 6$ moments of a distribution over **x**, **y**, **z** $\in \{-1, 1\}^n$.

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{ijk} A_{ijk} x_i y_j z_k$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$ -approximation to $\max_{\mathbf{x}, \mathbf{y}, \mathbf{z} \in \{-1, 1\}^n} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

The SDP relaxation:	Def: A degree-6 pseudo-expectation $\widetilde{\mathbb{E}}$ is a linear
$\max_{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}\left[oldsymbol{ m p}(\mathbf{x},\mathbf{y},\mathbf{z}) ight]$	map
_	$\widetilde{\mathbb{E}}: \{ polynomials \text{ of degree} \leqslant 6 \text{ in } \textbf{x}, \textbf{y}, \textbf{z} \} \rightarrow \mathbb{R}$
over all degree-6 pseudo-expectations $\widetilde{\mathbb{E}}$.	satisfying "consistency checks" for the degree $\leqslant 6$
(Solvable in polynomial time)	moments of a distribution over x , y , $\mathbf{z} \in \{-1, 1\}^n$.

Ex: if f is a polynomial in x, y, z of degree ≤ 3 , $|\widetilde{\mathbb{E}}f| \leq (\widetilde{\mathbb{E}}f^2)^{\frac{1}{2}}$

Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[\rho(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

- 1. Draw at random $\overline{\mathbf{x}} \sim \{-1,1\}^n$
- 2. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in \{-1, 1\}^n$
- **3**. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$

Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[\rho(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

- 1. Draw at random $\overline{\mathbf{x}} \sim \{-1, 1\}^n$
- 2. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in \{-1, 1\}^n$
- **3**. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$

 $\widetilde{\mathbb{E}}\left[p(\overline{x},y,z)\right]$ could be much smaller than $\widetilde{\mathbb{E}}\left[p(x,y,z)\right]$ for a typical \overline{x}

Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[\rho(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

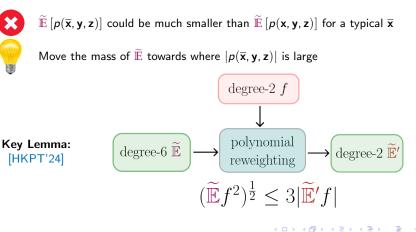
- 1. Draw at random $\overline{\mathbf{x}} \sim \{-1, 1\}^n$
- 2. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in \{-1, 1\}^n$
- **3**. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$

 $\widetilde{\mathbb{E}}\left[p(\overline{x},y,z)
ight]$ could be much smaller than $\widetilde{\mathbb{E}}\left[p(x,y,z)
ight]$ for a typical \overline{x}

Move the mass of $\widetilde{\mathbb{E}}$ towards where $|p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})|$ is large

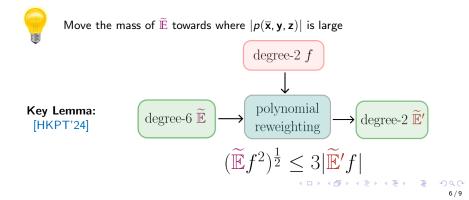
Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

- **1**. Draw at random $\overline{\mathbf{x}} \sim \{-1, 1\}^n$
- 2. Use quadratic optimization rounding on \mathbf{E} to get $\mathbf{\bar{y}}, \mathbf{\bar{z}} \in \{-1, 1\}^n$
- **3**. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$



Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

- 1. Draw at random $\overline{\mathbf{x}} \sim \{-1, 1\}^n$
- 2. Reweight $\widetilde{\mathbb{E}}$ into $\widetilde{\mathbb{E}}'$ based on $f = \rho(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})$
- 3. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}'$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in \{-1, 1\}^n$
- 4. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$



Result 2: the pruned SDP relaxation

Thm 2: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{ijk} A_{ijk} x_i y_j z_k$. There is an SDP relaxation of max p with $2^{O(\mathbf{k})} n^{O(1)}$ variables/constraints that achieves approximation $O(\sqrt{n/\mathbf{k}})$.

Result 2: the pruned SDP relaxation

Thm 2: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum_{ijk} A_{ijk} x_i y_j z_k$. There is an SDP relaxation of max p with $2^{O(\mathbf{k})} n^{O(1)}$ variables/constraints that achieves approximation $O(\sqrt{n/\mathbf{k}})$.

Hitting Set Generator for Linear
Threshold functions [HKPT'24]

$$\Omega \subseteq \{-1,1\}^n, \ |\Omega| = 2^{O(\mathbf{k})} n^{O(1)}$$

$$\forall \mathbf{w}, \exists \mathbf{\overline{x}} \in \Omega, \langle \mathbf{\overline{x}}, \mathbf{w} \rangle \ge \sqrt{\frac{n}{\mathbf{k}}} \cdot \|\mathbf{w}\|_1$$

$$\longrightarrow$$
Degree-12 SoS relaxation
Variables $M_{\mathbf{\overline{x}}}$ for all $\mathbf{\overline{x}} \in \Omega$
 $M_{\mathbf{\overline{x}}} \equiv p(\mathbf{\overline{x}}, \mathbf{y}, \mathbf{z})^k$

• [Hastad'01] Satisfying a $\frac{7}{8} + \varepsilon$ fraction of the clauses is NP-hard.

- ► [Hastad'01] Satisfying a $\frac{7}{8} + \varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\#clauses}}$ fraction of the clauses.

- [Hastad'01] Satisfying a $\frac{7}{8} + \varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\#\text{clauses}}}$ fraction of the clauses.

[HKPT'24] $n^{O(1)}$ -time algorithm satisfying a $\approx \frac{7}{8} + n^{-\frac{3}{4}}$ fraction of the clauses

- ► [Hastad'01] Satisfying a $\frac{7}{8} + \varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\#\text{clauses}}}$ fraction of the clauses.

[HKPT'24] $n^{O(1)}$ -time algorithm satisfying a $\approx \frac{7}{8} + n^{-\frac{3}{4}}$ fraction of the clauses

The advantage over $\frac{7}{8}$ is a *non-homogeneous* polynomial.

- ► [Hastad'01] Satisfying a $\frac{7}{8} + \varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\#\text{clauses}}}$ fraction of the clauses.

[HKPT'24] $n^{O(1)}$ -time algorithm satisfying a $\approx \frac{7}{8} + n^{-\frac{3}{4}}$ fraction of the clauses

- The advantage over $\frac{7}{8}$ is a *non-homogeneous* polynomial.
 - Optimize separately the degree-1, 2, 3 parts.
 - Add specific constraints to the SDP to avoid cancellations.

Conclusion

Problem: maximize a homogeneous degree-3 polynomial over S^{n-1} or $\{\pm 1\}^n$

- Rounding of the canonical SoS hierarchy via polynomial reweightings.
- Slightly improved time/approximation tradeoff via a pruned SDP relaxation.
- Improved approximation of satisfiable Max-3SAT instances by adding ad-hoc constraints.

Conclusion

Problem: maximize a homogeneous degree-3 polynomial over S^{n-1} or $\{\pm 1\}^n$

- Rounding of the canonical SoS hierarchy via polynomial reweightings.
- Slightly improved time/approximation tradeoff via a pruned SDP relaxation.
- Improved approximation of satisfiable Max-3SAT instances by adding ad-hoc constraints.

Open problems:

- Best known integrality gap for cubic optimization: $n^{1/4}$
- \sqrt{n} -approximation for *non-satisfiable* 3SAT instances?
- Applications of our rounding techniques to other problems?