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Quadratic polynomial optimization

Question: Given an arbitrary homogeneous degree-2 multilinear polynomial

p(x) := p(x1, . . . , xn) = ∑
1⩽i<j⩽n

Aijxixj ,

can we approximate efficiently max p(x)?

Largest eigenvalue of

A =
1

2


0 A12 . . . A1n

A12 0 . . . A2n
...

...
...

...
A1n A2n . . . 0



[Charikar-Wirth’04] O(log n)-approximation

[Grothendieck’53, ..., Alon-Naor’04]
O(1)-approximation when p(x, y) = ∑ij Aijxiyj

Based on rounding the basic SDP relaxation
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Our main results

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

p(x) := p(x1, . . . , xn) = ∑
1⩽i<j<k⩽n

Aijkxixjxk ,

can we approximate efficiently max p(x)?

Ex: “multiplicative” approximation of Max-3XOR

Over both Sn−1 and {−1, 1}n:

Thm 1: [HKPT’24] -approximation in time via a “canonical” SDP relaxation

−→ generalizes [Bhattiprolu-Gosh-Guruswami-Lee-Tulsiani’17]

Thm 2: [HKPT’24] -approximation in time nO(1) via a “pruned” SDP
relaxation

−→ matches [Khot-Naor’07] for k = log n
−→ also provides a certifiable upper bound on max p(x) (the SDP dual)
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Decoupling interlude

Why cubic optimization?

[Khot-Naor’07] Let A = (Aijk ) be a symmetric 3-tensor
with zero “diagonal”,

p(x) := ∑
ijk

Aijkxixjxk ,

p̃(x, y, z) := ∑
ijk

Aijkxiyjzk .

Then

max
x∈{−1,1}n

p(x) ≍ max
x,y,z∈{−1,1}n

p̃(x, y, z) .

Decoupled polynomial

Only holds for odd-degree (multilinear) polynomials
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Result 1: the canonical sum-of-squares relaxation

Thm 1: Let p(x, y, z) = ∑ijk Aijkxiyjzk . Rounding the degree-6 sum-of-squares

SDP relaxation yields a O(
√
n)-approximation to maxx,y,z∈{−1,1}n p(x, y, z).

The SDP relaxation:

max
Ẽ

Ẽ [p(x, y, z)]

over all degree-6
pseudo-expectations Ẽ.
(Solvable in polynomial time)

Def: A degree-6 pseudo-expectation Ẽ is a linear
map

Ẽ : {polynomials of degree ⩽ 6 in x, y, z} → R

satisfying “consistency checks” for the degree ⩽ 6
moments of a distribution over x, y, z ∈ {−1, 1}n.

Ex: if f is a polynomial in x, y, z of degree ⩽ 3, |Ẽf | ⩽ (Ẽf 2)
1
2
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Result 1: new rounding via polynomial reweightings

Input: degree-6 Ẽ maximizing Ẽ [p(x, y, z)]

1. Draw at random x ∼ {−1, 1}n

2. Use quadratic optimization rounding on Ẽ to get y, z ∈ {−1, 1}n

3. Output (x, y, z)

Ẽ [p(x, y, z)] could be much smaller than Ẽ [p(x, y, z)] for a typical x

Move the mass of Ẽ towards where |p(x, y, z)| is large

Key Lemma:
[HKPT’24]
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Result 2: the pruned SDP relaxation

Thm 2: Let p(x, y, z) = ∑ijk Aijkxiyjzk . There is an SDP relaxation of max p

with 2O(k)nO(1) variables/constraints that achieves approximation O(
√
n/k).
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Application to Max-3SAT

Problem: Given a satisfiable 3SAT formula with n variables, find an
assignment satisfying as many clauses as possible.

▶ [Hastad’01] Satisfying a 7
8 + ε fraction of the clauses is NP-hard.

▶ A random assignment satisfies a 7
8 ± 1√

#clauses
fraction of the clauses.

[HKPT’24] nO(1)-time algorithm satisfying a ≈ 7
8 + n−

3
4 fraction of the clauses

The advantage over 7
8 is a non-homogeneous polynomial.

▶ Optimize separately the degree-1, 2, 3 parts.

▶ Add specific constraints to the SDP to avoid cancellations.
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Conclusion

Problem: maximize a homogeneous degree-3 polynomial over Sn−1 or {±1}n
▶ Rounding of the canonical SoS hierarchy via polynomial reweightings.

▶ Slightly improved time/approximation tradeoff via a pruned SDP
relaxation.

▶ Improved approximation of satisfiable Max-3SAT instances by adding
ad-hoc constraints.

Open problems:

▶ Best known integrality gap for cubic optimization: n1/4

▶
√
n-approximation for non-satisfiable 3SAT instances?

▶ Applications of our rounding techniques to other problems?
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