New SDP Roundings and Certifiable Approximation for Cubic Optimization

Quadratic polynomial optimization

Question: Given an arbitrary homogeneous degree-2 multilinear polynomial

$$
p(\mathbf{x}):=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i<j \leqslant n} A_{i j} x_{i} x_{j},
$$

can we approximate efficiently $\max p(\mathbf{x})$?

Quadratic polynomial optimization

Question: Given an arbitrary homogeneous degree-2 multilinear polynomial

$$
p(\mathbf{x}):=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i<j \leqslant n} A_{i j} x_{i} x_{j},
$$

can we approximate efficiently $\max p(\mathbf{x})$?

Quadratic polynomial optimization

Question: Given an arbitrary homogeneous degree-2 multilinear polynomial

$$
p(\mathbf{x}):=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i<j \leqslant n} A_{i j} x_{i} x_{j},
$$

can we approximate efficiently $\max p(\mathbf{x})$?

Largest eigenvalue of
$\mathbf{A}=\frac{1}{2}\left[\begin{array}{cccc}0 & A_{12} & \ldots & A_{1 n} \\ A_{12} & 0 & \ldots & A_{2 n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{1 n} & A_{2 n} & \ldots & 0\end{array}\right]$

[Charikar-Wirth'04] $O(\log n)$-approximation
[Grothendieck'53, ..., Alon-Naor'04]
$O(1)$-approximation when $p(\mathbf{x}, \mathbf{y})=\sum_{i j} A_{i j} x_{i} y_{j}$
Based on rounding the basic SDP relaxation

Our main results

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$
p(\mathbf{x}):=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i<j<k \leqslant n} A_{i j k} x_{i} x_{j} x_{k},
$$

can we approximate efficiently $\max p(\mathbf{x})$?
Ex: "multiplicative" approximation of Max-3XOR

Our main results

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$
p(\mathbf{x}):=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i<j<k \leqslant n} A_{i j k} x_{i} x_{j} x_{k},
$$

can we approximate efficiently $\max p(\mathbf{x})$?
Ex: "multiplicative" approximation of Max-3XOR

Over both S^{n-1} and $\{-1,1\}^{n}$:
Thm 1: [HKPT'24] $O(\sqrt{n})$-approximation in time $n^{O(1)}$ via a "canonical" SDP relaxation

Thm 2: [HKPT'24] $O(\sqrt{n / \log n})$-approximation in time $n^{O(1)}$ via a "pruned" SDP relaxation

Our main results

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$
p(\mathbf{x}):=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i<j<k \leqslant n} A_{i j k} x_{i} x_{j} x_{k},
$$

can we approximate efficiently $\max p(\mathbf{x})$?
Ex: "multiplicative" approximation of Max-3XOR

Over both S^{n-1} and $\{-1,1\}^{n}$:
Thm 1: [HKPT'24] $O(\sqrt{n / k})$-approximation in time $n^{O(k)}$ via a "canonical" SDP relaxation

Thm 2: [HKPT'24] $O(\sqrt{n / k})$-approximation in time $2^{O(k)} n^{O(1)}$ via a "pruned" SDP relaxation

Our main results

Question: Given an arbitrary homogeneous degree-3 multilinear polynomial

$$
p(\mathbf{x}):=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leqslant i<j<k \leqslant n} A_{i j k} x_{i} x_{j} x_{k},
$$

can we approximate efficiently $\max p(\mathbf{x})$?
Ex: "multiplicative" approximation of Max-3XOR

Over both S^{n-1} and $\{-1,1\}^{n}$:
Thm 1: [HKPT'24] $O(\sqrt{n / k})$-approximation in time $n^{O(k)}$ via a "canonical" SDP relaxation
\longrightarrow generalizes [Bhattiprolu-Gosh-Guruswami-Lee-Tulsiani'17]
Thm 2: [HKPT'24] $O(\sqrt{n / k})$-approximation in time $2^{O(k)} n^{O(1)}$ via a "pruned" SDP relaxation
\longrightarrow matches [Khot-Naor'07] for $\mathbf{k}=\log n$
\longrightarrow also provides a certifiable upper bound on $\max p(\mathbf{x})$ (the SDP dual)

Decoupling interlude

Why cubic optimization?
[Khot-Naor'07] Let $\mathbf{A}=\left(A_{i j k}\right)$ be a symmetric 3-tensor with zero "diagonal",

$$
\begin{aligned}
p(\mathbf{x}) & :=\sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}, \\
\tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) & :=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k} .
\end{aligned}
$$

Decoupling interlude

Why cubic optimization?
[Khot-Naor'07] Let $\mathbf{A}=\left(A_{i j k}\right)$ be a symmetric 3-tensor with zero "diagonal",

$$
\begin{aligned}
p(\mathbf{x}) & :=\sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}, \\
\tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) & :=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k} .
\end{aligned}
$$

Then

$$
\max _{\mathbf{x} \in\{-1,1\}^{n}} p(\mathbf{x}) \asymp \max _{\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}} \tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z})
$$

Decoupled polynomial

Decoupling interlude

Why cubic optimization?
[Khot-Naor'07] Let $\mathbf{A}=\left(A_{i j k}\right)$ be a symmetric 3-tensor with zero "diagonal",

$$
\begin{aligned}
p(\mathbf{x}) & :=\sum_{i j k} A_{i j k} x_{i} x_{j} x_{k}, \\
\tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) & :=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k} .
\end{aligned}
$$

Then

$$
\max _{\mathbf{x} \in\{-1,1\}^{n}} p(\mathbf{x}) \asymp \max _{\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}} \tilde{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) .
$$

Only holds for odd-degree (multilinear) polynomials

Result 1: the canonical sum-of-squares relaxation

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$-approximation to $\max _{\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

Result 1: the canonical sum-of-squares relaxation

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$-approximation to $\max _{\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

The SDP relaxation:

$$
\max _{\widetilde{\widetilde{ }}} \widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]
$$

over all degree-6
pseudo-expectations $\widetilde{\mathbb{E}}$.
(Solvable in polynomial time)

Result 1: the canonical sum-of-squares relaxation

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$-approximation to $\max _{\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

The SDP relaxation:

$$
\max _{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]
$$

over all degree-6 pseudo-expectations $\widetilde{\mathbb{E}}$.
(Solvable in polynomial time)

Def: A degree-6 pseudo-expectation $\widetilde{\mathbb{E}}$ is a linear map
$\widetilde{\mathbb{E}}:\{$ polynomials of degree $\leqslant 6$ in $\mathbf{x}, \mathbf{y}, \mathbf{z}\} \rightarrow \mathbb{R}$
satisfying "consistency checks" for the degree $\leqslant 6$ moments of a distribution over $\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}$.

Result 1: the canonical sum-of-squares relaxation

Thm 1: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$. Rounding the degree-6 sum-of-squares SDP relaxation yields a $O(\sqrt{n})$-approximation to $\max _{\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}} p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

The SDP relaxation:

$$
\max _{\widetilde{\mathbb{E}}} \widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]
$$

over all degree-6 pseudo-expectations $\widetilde{\mathbb{E}}$. (Solvable in polynomial time)

Def: A degree-6 pseudo-expectation $\widetilde{\mathbb{E}}$ is a linear map
$\widetilde{\mathbb{E}}:\{$ polynomials of degree $\leqslant 6$ in $\mathbf{x}, \mathbf{y}, \mathbf{z}\} \rightarrow \mathbb{R}$ satisfying "consistency checks" for the degree $\leqslant 6$ moments of a distribution over $\mathbf{x}, \mathbf{y}, \mathbf{z} \in\{-1,1\}^{n}$.
$\mathbf{E x}$: if f is a polynomial in $\mathbf{x}, \mathbf{y}, \mathbf{z}$ of degree $\leqslant 3,|\widetilde{\mathbb{E}} f| \leqslant\left(\widetilde{\mathbb{E}} f^{2}\right)^{\frac{1}{2}}$

Result 1: new rounding via polynomial reweightings
Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

1. Draw at random $\overline{\mathbf{x}} \sim\{-1,1\}^{n}$
2. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in\{-1,1\}^{n}$
3. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$

Result 1: new rounding via polynomial reweightings

Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

1. Draw at random $\overline{\mathbf{x}} \sim\{-1,1\}^{n}$
2. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in\{-1,1\}^{n}$
3. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$

* $\widetilde{\mathbb{E}}[p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})]$ could be much smaller than $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$ for a typical $\overline{\mathbf{x}}$

Result 1: new rounding via polynomial reweightings

Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

1. Draw at random $\overline{\mathbf{x}} \sim\{-1,1\}^{n}$
2. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in\{-1,1\}^{n}$
3. Output ($\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}}$)
$\widetilde{\mathbb{E}}[p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})]$ could be much smaller than $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$ for a typical $\overline{\mathbf{x}}$
Move the mass of $\widetilde{\mathbb{E}}$ towards where $|p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})|$ is large

Result 1: new rounding via polynomial reweightings

Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

1. Draw at random $\overline{\mathrm{x}} \sim\{-1,1\}^{n}$
2. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in\{-1,1\}^{n}$
3. Output ($\overline{\mathrm{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}}$)
$\widetilde{\mathbb{E}}[p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})]$ could be much smaller than $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$ for a typical $\overline{\mathbf{x}}$ Move the mass of $\widetilde{\mathbb{E}}$ towards where $|p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})|$ is large

Key Lemma:
[HKPT'24]

Result 1: new rounding via polynomial reweightings

Input: degree-6 $\widetilde{\mathbb{E}}$ maximizing $\widetilde{\mathbb{E}}[p(\mathbf{x}, \mathbf{y}, \mathbf{z})]$

1. Draw at random $\overline{\mathbf{x}} \sim\{-1,1\}^{n}$
2. Reweight $\widetilde{\mathbb{E}}$ into $\widetilde{\mathbb{E}}^{\prime}$ based on $f=p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})$
3. Use quadratic optimization rounding on $\widetilde{\mathbb{E}}^{\prime}$ to get $\overline{\mathbf{y}}, \overline{\mathbf{z}} \in\{-1,1\}^{n}$
4. Output $(\overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}})$

Move the mass of $\widetilde{\mathbb{E}}$ towards where $|p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})|$ is large

Key Lemma:
[HKPT'24]

Result 2: the pruned SDP relaxation

Thm 2: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$. There is an SDP relaxation of maxp with $2^{O(k)} n^{O(1)}$ variables/constraints that achieves approximation $O(\sqrt{n / k})$.

Result 2: the pruned SDP relaxation

Thm 2: Let $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=\sum_{i j k} A_{i j k} x_{i} y_{j} z_{k}$. There is an SDP relaxation of $\max p$ with $2^{O(k)} n^{O(1)}$ variables/constraints that achieves approximation $O(\sqrt{n / k})$.

$$
\begin{aligned}
& \text { Hitting Set Generator for Linear } \\
& \text { Threshold functions [HKPT'24] } \\
& \Omega \subseteq\{-1,1\}^{n},|\Omega|=2^{O(\mathrm{k})} n^{O(1)} \\
& \forall \mathbf{w}, \exists \overline{\mathbf{x}} \in \Omega,\langle\overline{\mathbf{x}}, \mathbf{w}\rangle \geq \sqrt{\frac{n}{\mathrm{k}}} \cdot\|\mathbf{w}\|_{1} \\
& \text { Variables } M_{\overline{\mathrm{x}}} \text { for all } \overline{\mathbf{x}} \in \Omega \\
& M_{\overline{\mathbf{x}}} \equiv p(\overline{\mathbf{x}}, \mathbf{y}, \mathbf{z})^{k}
\end{aligned}
$$

Application to Max-3SAT

Problem: Given a satisfiable 3SAT formula with n variables, find an assignment satisfying as many clauses as possible.

Application to Max-3SAT

Problem: Given a satisfiable 3SAT formula with n variables, find an assignment satisfying as many clauses as possible.

- [Hastad'01] Satisfying a $\frac{7}{8}+\varepsilon$ fraction of the clauses is NP-hard.

Application to Max-3SAT

Problem: Given a satisfiable 3SAT formula with n variables, find an assignment satisfying as many clauses as possible.

- [Hastad'01] Satisfying a $\frac{7}{8}+\varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\# \text { clauses }}}$ fraction of the clauses.

Application to Max-3SAT

Problem: Given a satisfiable 3SAT formula with n variables, find an assignment satisfying as many clauses as possible.

- [Hastad'01] Satisfying a $\frac{7}{8}+\varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\# \text { clauses }}}$ fraction of the clauses.
[HKPT'24] $n^{O(1)}$-time algorithm satisfying $a \approx \frac{7}{8}+n^{-\frac{3}{4}}$ fraction of the clauses

Application to Max-3SAT

Problem: Given a satisfiable 3SAT formula with n variables, find an assignment satisfying as many clauses as possible.

- [Hastad'01] Satisfying a $\frac{7}{8}+\varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\# \text { clauses }}}$ fraction of the clauses.
[HKPT'24] $n^{O(1)}$-time algorithm satisfying $a \approx \frac{7}{8}+n^{-\frac{3}{4}}$ fraction of the clauses

©
The advantage over $\frac{7}{8}$ is a non-homogeneous polynomial.

Application to Max-3SAT

Problem: Given a satisfiable 3SAT formula with n variables, find an assignment satisfying as many clauses as possible.

- [Hastad'01] Satisfying a $\frac{7}{8}+\varepsilon$ fraction of the clauses is NP-hard.
- A random assignment satisfies a $\frac{7}{8} \pm \frac{1}{\sqrt{\# \text { clauses }}}$ fraction of the clauses.
[HKPT'24] $n^{O(1)}$-time algorithm satisfying $a \approx \frac{7}{8}+n^{-\frac{3}{4}}$ fraction of the clauses

The advantage over $\frac{7}{8}$ is a non-homogeneous polynomial.

- Optimize separately the degree-1, 2, 3 parts.
- Add specific constraints to the SDP to avoid cancellations.

Conclusion

Problem: maximize a homogeneous degree-3 polynomial over S^{n-1} or $\{ \pm 1\}^{n}$

- Rounding of the canonical SoS hierarchy via polynomial reweightings.
- Slightly improved time/approximation tradeoff via a pruned SDP relaxation.
- Improved approximation of satisfiable Max-3SAT instances by adding ad-hoc constraints.

Conclusion

Problem: maximize a homogeneous degree-3 polynomial over S^{n-1} or $\{ \pm 1\}^{n}$

- Rounding of the canonical SoS hierarchy via polynomial reweightings.
- Slightly improved time/approximation tradeoff via a pruned SDP relaxation.
- Improved approximation of satisfiable Max-3SAT instances by adding ad-hoc constraints.

Open problems:

- Best known integrality gap for cubic optimization: $n^{1 / 4}$
- \sqrt{n}-approximation for non-satisfiable 3SAT instances?
- Applications of our rounding techniques to other problems?

