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Iterative algorithms

Input: (random) matrix A ∈ Rn×n

Algorithm: maintain xt ∈ Rn

1. xt+1 = Axt

2. xt+1 = ft (xt), ft : R → R non-linearity

Ex: power iteration, message-passing, ...

Question: joint distribution of (x0, x1, . . .) for large n?

Today:

idealized iteration X0,X1, . . .

The tree approximation
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Plan

1. Motivation: random polynomial optimization

2. Building the tree approximation

3. Working in the asymptotic tree basis
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Motivation: random polynomial optimzation
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Quadratic polynomial optimization

Ex: Max-Cut, Max-2XOR, ...

Problem: maximize

p(x) =
n

∑
i ,j=1

Aijxixj .

over x ∈ {−1, 1}n in polynomial time.

[Grothendieck, ..., Charikar-Wirth’04]
O(log n)-approximation (probably tight)

Question: typical instances? Aij ∼
i.i.d.

± 1√
n

[GGJPR’20] convex relaxations cannot really beat “eigenvector rounding”

[Montanari’21] polytime algorithm achieving w.h.p. (1− ϵ)-approximation for
any fixed ϵ > 0
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Hypercube walks

Problem: maximize ∑n
i ,j=1 Aijxixj over x ∈ {±1}n when Aij ∼

i.i.d.
± 1√

n

[Montanari’21] For some well-chosen ft : Rt+1 → R,

wt+1 = Aft (wt, . . . ,w0)−
1

n

n

∑
i=1

t

∑
s=1

∂ft
∂ws

(wt,i , . . . ,w0,i )fs−1(ws−1, . . . ,w0) ,

Output: ∑t⩾0 ft (wt, . . . ,w0)

Iterative algorithms for non-certifiable
optimization problems

[P-Vladu’23] discrepancy theory
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Building the tree approximation
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The Fourier diagram basis

The Fourier diagram basis {Zα ∈ Rn : α unlabeled rooted graph}

Z α
i := ∑

injective φ :V (α)→ [n]
φ(•)=i

∏
{u,v}∈E (α)

Aφ(u),φ(v ) .

▶ Lower bounds against low degree polynomials & SDP hierarchies.

▶ Important to sum over distinct indices
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Cyclic diagrams

If Aij ∼
i.i.d.

± 1√
n
, the Fourier diagram basis simplifies as n → ∞.

Thm: [Jones-P’24]
The cyclic diagrams are
negligible as n → ∞.

Def: We say x
∞
= y if x− y is the sum of finitely many cyclic diagrams.

▶ Only for diagrams of size O(1)

▶ In general: free cumulants
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The asymptotic tree basis

Thm: [Jones-P ’24]
The tree diagrams with one subtree at
the root are asymptotically independent
Gaussian vectors

Thm: [Jones-P ’24]
The tree diagrams with several subtrees at the root are asymptotically
Hermite polynomials in the Gaussians
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The tree approximation

xt = Axt−1 or xt = ft (xt−1)

1. Expand xt in the Fourier diagram basis

2. Xt := expansion restricted to tree diagrams.

Then: xt
∞
= Xt, so ∥xt −Xt∥∞ = O

(
1√
n

)
.

Xt follows a simplified Gaussian dynamic!

Lem: [Jones-P ’24]

AX
∞
= X+ +X−
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Working in the asymptotic tree basis
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The cavity method
Belief propagation:

mt+1
i→j = ft

(
∑
k ̸=i

Aikm
t
k→i

)
, mt+1

i = gt

(
n

∑
k=1

Aikm
t
k→i

)
.

Approximate message passing:

wt+1 = Aft
(
wt)− 1

n

n

∑
i=1

ft
′(w t

i )w
t−1 , mt = gt (w

t) .

Thm: [Bayati-Lelarge-Montanari ’11, Jones-P. ’24] mt,BP ∞
= mt,AMP.

Pf: replace ≈ by
∞
=!

Lem: incoming messages
(mt

i→j )i :i ̸=j are asymptotically
independent

“Cavity method” made
rigorous
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State evolution

AX
∞
= X+ +X−

Approximate message passing:

Xt+1 = ft (Xt, . . . ,X0)
+

or

xt+1 = ft (xt, . . . , x0)−
1

n

n

∑
i=1

t

∑
s=1

∂ft
∂xs

(xt,i , . . . , x0,i )fs−1(xs−1, . . . , x0) .

Thm: (state evolution) [Bolthausen, Javanmard-Montanari, ...]

1. Xt is asymptotically Gaussian

2. E⟨Xt,Xs⟩ = E⟨ft−1(Xt−1, . . . ,X0), fs−1(Xs−1, . . . ,X0)⟩+ o(1)
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Back to random polynomial optimization

Problem: given Aij ∼
i.i.d.

± 1√
n
, maximize ⟨x,Ax⟩ over x ∈ {±1}n

[Montanari ’21] for some well-chosen ft ,

Wt+1 = (ft (Wt−1, . . . ,W0)Wt)
+ , X = ∑

t⩾0

ft (Wt−1, . . . ,W0)Wt

Analysis: Wt has depth exactly t.

⟨X,AX⟩ ∞
= ⟨X,X+⟩+ ⟨X,X−⟩ ∞

= 2⟨X,X+⟩

Question: “combinatorial” Parisi dual representation?

lim
δ→0

sup
X :P(X∈[−1,1])⩾1−δ

2EXX+ = Parisi constant ?
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Conclusion

The Fourier diagram basis simplifies as n → ∞ to the asymptotic tree basis of
independent Gaussian vectors.

▶ Beyond O(1) iterations?

Ex: eigenvector BBP transition?

▶ Semirandom models?
Ex: rotationally-invariant models A = UDU⊤, U random rotation and
adversarial diagonal D

▶ Proving structural properties of the models
Ex: replica-symmetric free energy of the SK model

Thank you!
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