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1. Constraint satisfaction problems

Boolean formulas:

(x1 ∨ ¬x4 ∨ x5)

∧ (¬x1 ∨ x2 ∨ x4)

∧ . . .

State-of-the-art:

max p(x) :=
1

2
− 1

2 |E |
∑
uv∈E

xuxv

[Goemans–Williamson’95,
Charikar–Wirth’04, ...]

This thesis: improve over
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2. Random polynomials (1/2)

Typical/random coefficients cij = cji ∼ N(0, 1)

OPT(n) := max
∥x∥2⩽1

n∑
i,j=1

cijxixj OPT(n) := max
∥x∥∞⩽1

n∑
i,j=1

cijxixj

Union bound:
OPT(n) ⩽ O(

√
n)

[Wigner’55] lim
n→∞

1√
n
OPT(n) = 2

Union bound:
OPT(n) ⩽ O(n1.5)

[Parisi’80] lim
n→∞

1

n1.5
OPT(n) = P∗

Rigorous methods:

very technical

hard to generalize

7 / 13



2. Random polynomials (1/2)

Typical/random coefficients cij = cji ∼ N(0, 1)

OPT(n) := max
∥x∥2⩽1

n∑
i,j=1

cijxixj OPT(n) := max
∥x∥∞⩽1

n∑
i,j=1

cijxixj

Union bound:
OPT(n) ⩽ O(

√
n)

[Wigner’55] lim
n→∞

1√
n
OPT(n) = 2

Union bound:
OPT(n) ⩽ O(n1.5)

[Parisi’80] lim
n→∞

1

n1.5
OPT(n) = P∗

Rigorous methods:

very technical

hard to generalize

7 / 13



2. Random polynomials (1/2)

Typical/random coefficients cij = cji ∼ N(0, 1)

OPT(n) := max
∥x∥2⩽1

n∑
i,j=1

cijxixj OPT(n) := max
∥x∥∞⩽1

n∑
i,j=1

cijxixj

Union bound:
OPT(n) ⩽ O(

√
n)

[Wigner’55] lim
n→∞

1√
n
OPT(n) = 2

Union bound:
OPT(n) ⩽ O(n1.5)

[Parisi’80] lim
n→∞

1

n1.5
OPT(n) = P∗

Rigorous methods:

very technical

hard to generalize

7 / 13



2. Random polynomials (1/2)

Typical/random coefficients cij = cji ∼ N(0, 1)

OPT(n) := max
∥x∥2⩽1

n∑
i,j=1

cijxixj OPT(n) := max
∥x∥∞⩽1

n∑
i,j=1

cijxixj

Union bound:
OPT(n) ⩽ O(

√
n)

[Wigner’55] lim
n→∞

1√
n
OPT(n) = 2

Union bound:
OPT(n) ⩽ O(n1.5)

[Parisi’80] lim
n→∞

1

n1.5
OPT(n) = P∗

Rigorous methods:

very technical

hard to generalize

7 / 13



2. Random polynomials (1/2)

Typical/random coefficients cij = cji ∼ N(0, 1)

OPT(n) := max
∥x∥2⩽1

n∑
i,j=1

cijxixj OPT(n) := max
∥x∥∞⩽1

n∑
i,j=1

cijxixj

Union bound:
OPT(n) ⩽ O(

√
n)

[Wigner’55] lim
n→∞

1√
n
OPT(n) = 2

Union bound:
OPT(n) ⩽ O(n1.5)

[Parisi’80] lim
n→∞

1

n1.5
OPT(n) = P∗

Rigorous methods:

very technical

hard to generalize
7 / 13



2. Random polynomials (2/2)

This thesis: as n → ∞,

1

2n
3
2−

2
p

max
∥x∥p⩽1

n∑
i,j=1

cijxixj

⩾

. . .
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3. Spectral hypergraph theory

[Friedman–Wigderson’94]

Def: H has a spectral gap if

max
∥x∥2⩽1

pH(x)︸ ︷︷ ︸
λ2(H)

≪ max
∥x∥2⩽1

qH(x)︸ ︷︷ ︸
λ1(H)

Naive union bound

This thesis: Sparse random hypergraphs have
a spectral gap once λ1(H) → ∞
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4. Combinatorial discrepancy

Minimize: disc(x1, . . . , xn) :=

∥∥∥∥∥
n∑

i=1

xiu i

∥∥∥∥∥

Let u i ∈ Rn s.t. ∥u i∥∞ ⩽ 1

min
x∈{−1,1}n

∥∥∥∥∥
n∑

i=1

xiu i

∥∥∥∥∥
∞

⩽ K
√
n

Union bound: K ⩽
√

log n

This thesis:
K ⩽ 4.1

Newton’s method
on a regularized

objective
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Algorithms beyond the union bound
Polynomial optimization and discrepancy theory

“To prove that something exists, analyze an algorithm finding it”

Future work:

1. Unify analysis of higher-degree convex relaxations

2. Solve optimization problems in the tree basis

3. Generalizations to semi-random and deterministic polynomials
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