Diagram analysis of iterative algorithms

Chris Jones

Lucas Pesenti

The diagram basis

The diagram basis $\{Z_{\alpha} : \alpha \text{ graph}\}$ associated to an $n \times n$ matrix **A** is:

 $\{Z_{\alpha} : |E(\alpha)| \leq d\}$ spans all symmetric degree-*d* polynomials in the entries of A.

Instrumental in proving lower bounds against low degree polynomials & SDP hierarchies.

The tree approximation

Main theorem: if **A** has independent mean-0 variance-1 entries, as $n \to \infty$,

- The cyclic diagrams are negligible.
- The trees are Gaussians.
- The forests are Hermite polynomials in these Gaussians.

The cavity method

Using a vector variant of the diagram basis, we can make some heuristic arguments directly rigorous!

$$[BP] \quad m_{i \to j}^{t} = f_t \left(\sum_{k \neq i} A_{ik} m_{k \to i}^{t-1} \right),$$
$$[AMP] \quad \mathbf{w}^{t} = \mathbf{A} f_t \left(\mathbf{w}^{t-1} \right) - \text{Onsager t}$$

Thus **BP** & AMP are asymptotically equivalent.

State evolution

Ų

Easy pictorial proof of state evolution!

Open questions

- 2. How to handle a number of iterations growing with n?
- 3. How much randomness is needed for the tree approximation?

$$m_i^t = g_t \left(\sum_{k=1}^n A_{ik} m_{k \to i}^{t-1} \right)$$

 $\mathbf{m}^t = g_t(\mathbf{w}^t)$. term,

- $\mathbf{m}^{t,\text{BP}} \mathbf{m}^{t,\text{AMP}}$ is a sum of cyclic diagrams.

1. What is the right diagram basis for rotationally invariant distributions?