Diagram analysis of iterative algorithms

Chris Jones

The diagram basis

The diagram basis {7, : « graph} associated to an n X n matrix A is:
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{Z, : |E(a)| < d} spans all symmetric degree-d polynomials in the entries
of A.

Instrumental in proving lower bounds against low degree polyno-
g mials & SDP hierarchies.
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The tree approximation

Main theorem: if A has independent mean-0 variance-1 entries, as n — oo,

o The cyclic diagrams are negligible.
o The trees are Gaussians.

« The forests are Hermite polynomials in these Gaussians.
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negligible Gaussian Hermite

Lucas Pesenti

The cavity method

Using a vector variant of the diagram basis, we can make some heuristic ar-
guments directly rigorous!

[BP] m’L—U - ft Z Alkmk‘—m ) mf = Gt Alkmi:—iz) :
k#1 k

[AMP] w'=Af, (wt_l) — Onsager term, m' = g;(w').

Expand the messages in the diagram basis.
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m"> — m"*"" is a sum of cyclic diagrams.

Ej Thus BP & AMP are asymptotically equivalent.

State evolution

Effects of the BP/AMP operations on rooted trees:

Gaussian tree
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Easy pictorial proof of state evolution!

Open questions

1. What is the right diagram basis for rotationally invariant distributions?
2. How to handle a number of iterations growing with n?

3. How much randomness is needed for the tree approximation?



